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Explainable AI for Classifying 
Devices on the Internet

Abstract: Devices reachable on the Internet pose varying levels of risk to their 
owners and the wider public, depending on their role and functionality, which can be 
considered their class. Discussing the security implications of these devices without 
knowing their classes is impractical. There are multiple AI methods to solve the 
challenge of classifying devices. Since the number of significant features in device 
HTTP response was determined to be low in the existing word-embedding neural 
network, we elected to employ an alternative method of Naive Bayes classification. 
The Naive Bayes method demonstrated high accuracy, but we recognise the need to 
explain classification results to improve classification accuracy.

The black-box implementation of Artificial Neural Networks has been a serious concern 
when evaluating the classification results produced in most fields. While devices on 
the Internet have historically been classified manually or using trivial fingerprinting 
to match major vendors, these are not feasible anymore because of an ever-increasing 
variety of devices on the Internet. In the last few years, device classification using 
Neural Networks has emerged as a new research direction. These research results 
often claim high accuracy through the validation employed, but through random 
sampling there always occur devices that cannot be easily classified, that an expert 
intuitively would classify differently. Addressing this issue is critical for establishing 
trust in classification results and can be achieved by employing explainable AI.

To better understand the models for classifying devices reachable on the Internet and 
to improve classification accuracy, we developed a novel explainable AI method, 
which returns the features that are most significant for classification decisions. We 
employed a Local Interpretable Model-Agnostic Explanations (LIME) framework to 
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1. INTRODUCTION

With billions of devices connected to the Internet, it is not a question of whether the 
devices will be compromised or abused but when. Hundreds of millions of devices 
that are publicly reachable on the Internet are particularly vulnerable. Unsophisticated 
attackers can freely communicate with these devices and exploit configuration 
weaknesses or unpatched publicly disclosed vulnerabilities. Even if there are no 
currently disclosed vulnerabilities, these can appear at any time in the future. The 
classification of devices on the Internet has emerged in the last few years as an 
important research topic in the context of cyber security. Researchers and defenders 
have to understand new threats quickly and precisely in order to respond swiftly. 
Longstanding issues have to be understood so as to identify and address the root 
causes.

What class of devices has been compromised to create the latest Internet of things 
(IoT) botnet? What classes of devices have been abused for decades for distributed 
denial-of-service (DDoS) attacks? What devices receive a few anomalous network 
traffic flows from our network? These are just a few of many questions researchers 
and cyber security professionals have to answer. A pattern in the questions can 
already be observed inquiring about either large sets of devices or a few individual 
ones. Traditionally, this has been addressed either by applying a limited set of static 
classification rules or manual investigation by an expert. The increase in the number of 
devices is accompanied also by an increase in their heterogeneity. Static rules cannot 
keep up with this trend; therefore, the precision and also suitability of this method 
is decreasing. Expert availability is limited, and time is valuable – the automation 
of expert knowledge is the holy grail of AI application in the cyber security domain.

Expert knowledge, especially in cyber security, stretches far beyond applying standard 
tools and techniques. An expert’s intuition is built upon years of experience, and the 
ability to validate predictions. An expert understands that a cloud computing network 
should not have many ICS devices present on it. And the few that might have a 
purpose would be specific to the infrastructure of the data centre. In comparison, even 
a sophisticated ML classifier classifies a large number of IoT devices in commercial 

explain Naive Bayes model classification results, and using this method were able to 
further improve accuracy with a better understanding of the results.
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hosting and cloud networks [1]. Is this only an issue of lacking a network name or type 
(e.g. residential, commercial, cloud) as a feature? This feature can easily be added [2], 
but it is still not a guaranteed fix. While this is an obvious anomaly that could be easily 
identified and addressed by an expert, it is unclear how prevalent the misclassification 
is in the current research body, which stems from the black-box approach of the ML 
classification.

Feature selection is generally based on expert knowledge. Experts attempt to transfer 
their knowledge and characterise their intuition in the specific domain similar to how 
static rules would be created. Features for device classification with HTTP interfaces 
include directly identifiable keywords (the typical way to define a static rule), the 
behaviour of the responses, exclusion conditions, and the statistical properties of 
the responses [3], [4]. Expert feature decisions can be based on external sources 
of information; for example, a detailed scan of the device, which makes validating 
classification results much harder. In all the cases, the validity of feature selection 
can be questioned. While it is unfeasible for the expert to define all the less common 
features, experts can easily miss relationships between common features or put too 
much emphasis on some. Without explainable classification, feature selection and 
tuning can become overly reliant on the initial expert input.

The trustworthiness of classification even before adversary attempts are considered is 
the main obstacle to adoption in production. While the continuous improvement of the 
classification of identified issues and increasing precision is the expected progression 
in research, a single misclassification can be catastrophic in a cyber defence setting. 
Another advantage of the suitability of this research is that the level of precision is 
approaching expert knowledge for large sets, which has never before been possible.

The contributions of this paper include applying explainable AI to the problem of the 
classification of devices for the first time in published literature and bridging the gap 
between expert knowledge and automated classification.

Section 2 reviews related work, and Section 3 describes the application of explainable 
AI for the problem of device classification. Section 4 analyses the classification 
explanation for a random device from each defined class. Section 5 provides an 
overview of the overall classification results, and Section 6 provides final conclusions.
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2. RELATED WORK

Scanning the Internet for specific devices or protocols is an established practice 
in security research. This type of research in itself has no novelty in respect to the 
classification process. Assumptions can be made that a device with a known open 
port corresponding to a non-generic protocol is serving a role that could be easily 
classified. Further validation by executing protocol communications can be conducted 
and data potentially useful for classification extracted. This methodology is effective 
for locating high-impact devices that are running specific protocols (commonly ICS) 
for the purpose of disabling public access. Mirian et al. scanned the Internet for 
common industrial protocols while identifying the discrepancy between open ports 
and the ability to handle respective protocol handshakes [5]. Dahlmanns et al. explore 
the security issues for the publicly reachable industrial protocol OPC UA [6]. Feng et 
al. automated IoT classification rule generation [7].

The privileged observer can identify traffic passing through network routers. The 
basic properties of port and protocol communication can be similar, while active 
communication requires sophisticated fingerprinting. This approach might make 
it possible to identify devices that are not publicly reachable but are actively 
communicating, while at the same time, it might miss devices that are not actively 
sending packets. Nawrocki et al. utilised IXP and ISP vantage points to identify 
common industrial protocols while still being challenged by traffic classification [8].

The research into AI classification consists of the same two vantage point approaches. 
The main challenge is identifying features and labelling sufficient training sets. Yang 
et al. identified and classified ICS and IoT devices extracting features and fingerprints 
from multiple communication layers [9]. Augmenting this with automated rule 
generation saved a significant amount of work for labelling the training set. Lavrenovs 
et al. trained classifier targeting interfaces based on generic HTTP protocols [2]. 
Privileged network observer classifiers are commonly trained on labelled data either 
from a laboratory network [10] or a campus network [11], [12]. Yadav et al. provide a 
systematic categorisation of ML augmented techniques for fingerprinting IoT devices 
[13].

Due to the fact that many AI models follow the black-box approach in terms of 
result transparency, research in the explainable AI domain has evolved drastically 
in recent years. Multiple frameworks such as Local Interpretable Model-Agnostic 
Explanations (LIME) [14] and SHapley Additive exPlanation (SHAP) [15] have 
been developed, aiming to facilitate the implementation of AI in different domains, 
by providing transparency and trust in underlying models. Different explainable AI 
solutions are already employed in the IoT domain. An IoT system [16] of low-cost 
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sensors incorporates an explainable AI decision support system. Another IoT system 
[17] makes use of an approach within the human-centric AI field for generating 
explanations about the knowledge learned by a neural network (in particular a 
multilayer perceptron) from IoT environments. We selected the LIME framework for 
our implementation, as it is one of the most robust and established solutions.

3. AI FOR DEVICE CLASSIFICATION

The input for classification is a scanning output – HTTP responses in a JSON format. 
The established text classification methods often suffer from large vector sizes and are 
less effective as the number of samples rises. The most effective method is a neural 
network [18], which learns automatically from examples, but suffers from a lack of 
results transparency. We are addressing this drawback using explainable AI. Another 
effective method for particular IoT use cases is Naive Bayes [19], which often serves 
as a robust method for data classification, but vectors representing an incident in 
Naive Bayes are larger than in the word-embedding methods of the neural network 
approach. However, in the case of IoT devices, we have experimentally identified that 
data is sparse, and the vector size is not large. A Naive Bayes method expects each 
feature in an HTTP response to be independent of all other features. Consequently, for 
the particular use case of classifying IoT devices, we suggest using Naive Bayes for 
text classification.

A. Features Used for Classification
We rely on features of HTTP responses suitable for the classification that have 
previously been developed and described in detail in [2]–[4]. These include HTTP 
response headers and the respective values, network name, HTML tree structure hash, 
body title, body keywords, SSL certificate issuer, and subject.

B. Data Sets
The primary data set consists of Internet scans of web interfaces. These scans are 
created by tools commonly used for Internet research – zmap and zgrab2 [20]. Both 
the HTTP default port 80 and the common alternative port 8080 were scanned in 
December 2020. Up to three redirects were followed to any port including HTTPS, in 
which case TLS negotiation was also saved. This toolset makes it possible to acquire 
research data in a uniform way, where zmap conducts Internet-wide (IPv4 only) 
scanning for open TCP ports in an optimised manner and hands over the identified 
services to zgrab2 for communicating on the HTTP application level, extracting 
response properties (headers, body, TLS, encountered errors), and formatting in a 
suitable way for further processing.
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For the standard port, there were 51,118,537 elements, and for the alternative 
port, 8,343,898 elements. An element is a response (and appropriate redirects) 
corresponding to a single request that contains at least one proper HTTP response. We 
have augmented the elements in the data sets with additional features. The network 
name was looked up via the Maxmind GeoIP database. HTML tree hash, first title and 
body words were all generated from the response HTML body itself.

Secondary data sets (for 2018 and 2019) were utilised only to provide a comparison 
of the classification differences using the newly proposed Naive Bayes application, 
and the results are presented in Section 5. These older data sets are analysed in detail 
in [2].

We rely on the labelled set consisting of 171,791 elements developed in [2]. This 
was created from random elements of the 2018 port 80 data set, and therefore is 
unbalanced across classes. There are 132,562 WEB, 22,002 NET, 9,561 IPCAM, 711 
INFRA, 265 VOIP, 243 ICS, 218 IOT, 153 PRINTER, 4,175 UNCLEAR and 1,901 
UNCATEGORIZED devices in this labelled set. Class motivations and definitions are 
described in detail in [2]. WEB devices are generic web sites. ICS devices serve some 
industrial purpose and thus might be the most impactful class. NET devices provide 
network connectivity to both residential and large-scale networks. IPCAM provide 
networked video surveillance or recording. INFRA devices provide infrastructure 
functionality for virtualised and related services. VOIP devices provide IP telephony 
services. IOT devices include all IoT and smart home products. PRINTER class 
consists of printers and printing servers. It is impossible to determine the class of 
UNCATEGORIZED devices while UNCLEAR are likely embedded devices without 
a clear role but not serving a WEB role.

C. Comparison with the Neural Network Classification
To classify IoT devices, we examined two AI models. The first model [2] was the 
Neural Network (NN) with Word Embeddings, which provided good results with high 
classification accuracy (87%). But the drawback of this model is that classification 
results are difficult to explain due to the black-box description of the NN structure. 
The second model is a Naive Bayes (NB) classification model, which is fast and easy 
to implement.

The Multinomial NB is often used for document classification problems, using the 
frequency of the words existing in the document as input for the calculation. The 
main difference between the NB model and the NN model is that the predictors are 
regarded as independent. Examining features extracted from IoT device responses, 
we concluded that they should not necessarily be regarded as dependent, because 
they come from different independent response parts such as the header, and different 
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body parts, which describe independent aspects such as the domain, company name, 
technologies. The position of a word within a sentence and possible relations between 
the words can be omitted in the case of sparse data in an IoT device response. 
Therefore, we can assume the independence of IoT features and employ the NB model 
for classification. Additionally, as described in a comparative NN vs NB study [21], 
NNs have a long training time and require a large number of parameters that are best 
determined empirically. It has been  observed that the NB classifier outperforms ANN 
learning algorithms in all cases. NB is a generative model, which assumes conditional 
independence, as in the IoT devices case, whereas NNs are discriminative models, 
which only model the probability of the class given the input, as described in [22] 
and [23].

Another consideration supporting the NB model was that for meaningful NN training, 
long feature vectors are better, whereas IoT device feature vectors are often quite 
short and NB models could perform better in this particular case. The NB model is 
also a better match to explain it afterwards using the LIME [24] model. The LIME 
model explains the predictions of NB classifiers, providing rational numbers and 
associated features as text, which allows the human interpreter to understand if the 
feature word was negative or positive for each word in the IoT device response. With 
the LIME model, we aim to understand specific predictions to investigate the NB 
model whenever we doubt a given classification.

D. General IoT Device Classification Workflow
Device classification employs feature extraction and training of the NB model for 
queries. Classification predicts previously defined categories for a given sample. 
There are ten expert-defined classes: ICS, INFRA, IOT, IPCAM, NET, PRINTER, 
UNCATEGORIZED, UNCLEAR, VOIP and WEB. Supervised learning employs 
labelled training data to learn mapping functions from a given input (list of words) 
to the desired output value (class name). The workflow process is composed of two 
parts. One process is NB model training, where the workflow acquires device data 
from different sources such as the Internet and domain experts. The model is trained 
and regularly updated using extended knowledge from new device crawls. Figure 1 
provides an overview of device classification using NB. This approach is based on 
a knowledge base containing a large number of labelled responses in JSON format 
(Step 1). This data can be provided by different means, collected at different times 
for particular operating systems, and can be separated by type of application and 
protocol. The novelty of this approach is that, for typical use cases, we propose to 
have associated decision rules for initial labelling. All such rules are then aggregated 
in a common labelled dataset, which supports final classification. We send requests 
to devices, and the system extracts features (Step 2) from the response and stores 
them for further analysis and queries the model that was trained on the knowledge 
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base. During the feature extraction, we execute parsing, filtering, and normalising of 
the content. The final classification result is based on querying the model (Step 3) or 
cache if the sample hash is already known and is a report in the form of a particular 
class name. To explain classification results, we query an explainable model (Step 4) 
based on the NB model and receive features with their severity for a particular class.

FIGURE 1: THE WORKFLOW FOR FEATURE EXTRACTION, DEVICE CLASSIFICATION, AND 
CLASSIFICATION EXPLANATION USING A NAIVE BAYES

Having an HTTP response from IoT devices in the form of a JSON file, we can classify 
the given IoT device description to one of the earlier defined IoT device classes 
employing the Naive Bayes algorithm (1). This formula shows the probability of the 
IoT device description D (2) belonging to the IoT device class c. The probability of 
the IoT device description D is a product of all specifications ds that are comprised in 
the IoT device vocabulary.

(1)
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The Naive Bayes algorithm picks the IoT device class with the highest probability and 
reports this as a classification result.

E. Naive Bayes and Explainable Model Training
The data for NB model training is prepared as described in Figure 1 in the previous 
section. We start with the definition of IoT classes. In the next step, we load a labelled 
dataset, dividing it into train, test and validation datasets. After acquisition and feature 
extraction, the input for the model is a list of words for each sample. For the detection 
of the most valuable features, we apply a TF-IDF vectoriser. TF-IDF helps to exclude 
words that are too frequent. For tokenising, filtering and normalising features, we 
filter out common and stop words, remove punctuation and special characters, remove 
non-alphanumeric characters, convert to lower case to have case insensitive matching, 
and normalise size. In the tokenising step, we break down each sentence to a set of 
single words. This is then converted into the one-hot vector to be processed at the 
input level of the NB model in Figure 2. To perform training, features aggregated in 
text form must be converted into numerical values, since machine learning algorithms 
cannot process plain text. Therefore, each uploaded sample (see Figure 2) is converted 
into an array of strings, where each string represents a particular feature. Then strings 
are encoded using indices, and each feature string has a unique index. If this feature 
repeats in the samples, we re-use its index. Finally, arrays of indexes are converted 
to one-hot encoded vectors, meaning that the position of each feature in the original 
feature set is encoded using “1” if a feature exists in the given place or “0” if not. The 
NB training and accuracy calculation process took 15.723163 seconds. To explain 
classification results, we create an explainable model by creating a pipeline for the 
previously calculated NB model, using a vectoriser. Using the vectoriser we create a 
LIME text explainer for the classes defined in the first step of the workflow. Finally, 
using the LIME text explainer, we explain the classes predicted by the NB model 
and obtain related class features and weights for each query sample. The LIME text 
explainer calculation took 3.345 seconds. Each query takes approximately 1 second 
for the whole workflow.

(2)
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FIGURE 2: THE WORKFLOW FOR NAIVE BAYES AND EXPLAINABLE MODEL TRAINING

We trained a balanced model to avoid the bias in the original large labelled dataset, 
because we identified that by randomly sampling the classified output of the whole data 
set the small model performed better. As the full labelled data set primarily consists 
of WEB devices, the classified output is significantly skewed towards classifying 
devices as WEB. To avoid the bias of overrepresented classes in the labelled data set 
(in total 171,791), such as WEB, we employ a balanced labelled training set (in total 
11,479): ICS:243, INFRA:711, IOT:218, IPCAM:1,999, NET:2,000, PRINTER:153, 
UNCATEGORIZED:1,901, UNCLEAR:1,999, VOIP:265, WEB:1,999. The labelled 
training data set was divided into a training set (5,628), validation set (2,413), and 
test set (3,447). The test accuracy is 82%. Therefore, the classification results can 
be interpreted by humans able to reason and explain why a certain classification was 
derived. We can acquire the explanations for different features in a numerical form, 
meaning their weights with positive and negative signs, which means that words that 
are weighted negative towards one class may be positive towards another.

4. UNDERSTANDING THE CLASSIFICATION

Explainable classification can further increase the precision and also transfer the new 
knowledge back to experts. We review a randomly selected device from each class in 
an attempt to understand the classification and to evaluate options for improving it. 
We present the calculated prediction of classes and the most impactful weights of the 
features determining the likely classes.

A Cisco IP telephony device classified as VOIP is presented in Figure 3. While an 
expert would focus on the keywords “Cisco” and “SPA”, the classifier selects “spa” as 
the highest weight feature and disregards “cisco” as manufacturing a large variety of 
NET devices. While authentication headers are more indicative of other lower power 
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and cheaper devices and have negative weight in this case, this is counterweighted by 
a slightly more complex and secure variant instead of plain text.

FIGURE 3: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR A VOIP DEVICE

A PRINTER device is presented in Figure 4. The highest weight features “hp” and 
“offi cejet” correspond to one of the most common printer series covered by most 
static rule sets. The feature “broadband” is weighted negatively as is more expected in 
the context of networking devices. The “fi nance” keyword is part of the network name 
feature, which is not common in other randomly reviewed devices here.

FIGURE 4: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR A PRINTER DEVICE

A smart home automation device from LOXONE classifi ed as IOT is presented in 
Figure 5. While none of the high-weight features identifi es the vendor or model, 
which is the way an expert would write a static rule for this device, the keyword 
“webinterface” for the interface and response headers has the highest weight. At the 
same time, security headers are weighted negatively, indicating that the model expects 
IOT devices to have less security features. Interestingly, a network name feature 
consisting of “austria” and “telekom” indicates that the manufacturer, based in Austria, 
has a high presence in Austrian networks. While this can be intuitively recognised by 
an expert, the variety of devices and complexity of the rule has prevented this from 
being implemented in static classifi cation rule sets.
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FIGURE 5: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN IOT DEVICE

A VMware Horizon device classifi ed as INFRA is presented in Figure 6. By the 
defi nition of the class, most VMware solutions match INFRA, thus the high weight 
of the keyword “vmware”, as well as all other classes assigning a negative value to it, 
is unsurprising. The product keyword is also expected; static classifi cation rule sets 
might contain a simple rule matching these two keywords together.

FIGURE 6: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN INFRA DEVICE

From the randomly selected devices, the spectrum analyser has the least features and 
is classifi ed as ICS and presented in Figure 7. ICS devices can have the least properties 
of the responses that can be extracted as features. Rich response features typically 
weight heavily against the device being classifi ed as an ICS. While the combination 
of “spectrum” and “analyser” can be evident for humans, these are treated as separate 
features and “spectrum” is weighted against this class while being weighted heavily in 
favour of some other classes. This identifi es an issue with introducing network names 
as a feature, in this case, likely the large ISP named Spectrum, suggesting that the 
network name feature should be treated differently from the response features.
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FIGURE 7: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN ICS DEVICE

For the network device presented in Figure 8 (NET class), the second highest weight 
feature “gateway” is a classic keyword even in static rules. The feature set and raw 
response confi rm that this is an unbranded residential network gateway for which 
even an expert is unable to extract more information without active probing. This 
feature is not unique to the NET class. It might correspond to gateway functionality in 
an application protocol sense or display confi guration debugging information for any 
networked device. In this particular case, this feature is weighted in favour of only 
the VOIP class. Most of the remaining determining features consist of authentication 
interface keywords, including the highest weight feature “incorrect” indicating failed 
authentication. The way an authentication interface is presented has a high weight in 
determining the class.

FIGURE 8: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR A NET DEVICE

A Hikvision networked surveillance device classifi ed as IPCAM is presented in Figure 
9. The “dnvrswebs” is a software version unique to IP cameras and video recorders 
and thus is weighted heavily. In general, it is weighted negatively against all other 
classes. Most static rule sets have this as a simple match rule to reliably classify IP 
cameras.
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FIGURE 9: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN IPCAM DEVICE

The WEB device presented in Figure 10 is an Apache Tomcat interface allowing the 
deployment and management of web applications. While the feature “apache” has a 
high weight in determining the class, it is not always the case, otherwise a blanket 
static rule would suffi ce. In general, it has a negative weight on the UNCLEAR class 
where no web sites are expected. The keyword “restricted”, generally associated with 
web interface authentication, has a signifi cant negative weight.

FIGURE 10: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR A WEB DEVICE

A device classifi ed as UNCLEAR and likely an embedded device without a 
determinable functionality but defi nitely not a generic web site is presented in Figure 
11. Keywords related to HTTP basic authentication and the displayed message are 
weighting in favour of this class; while the presence of the Server header revealing 
software name and version is weighting against, as it is often a high-weight feature, in 
this case, it is a generic embedded software having many uses.

FIGURE 11: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN UNCLEAR DEVICE
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An UNCATEGORIZED device that cannot be determined as part of any class is 
presented in Figure 12. This device has a small feature set (all generic) but not as small 
as the most basic embedded devices. The generic response headers are suffi cient to be 
also those of a website or service not handling default requests. In general, plain text 
content type, which is the heaviest weighted feature, corresponds to an unformatted 
output of mostly short error messages. From this set of features, an expert is not able 
to reliably determine the class either.

FIGURE 12: CLASS PREDICTIONS AND FEATURE WEIGHTS FOR AN UNCATEGORIZED DEVICE

While there can be identifi ed cases that are common and covered by static 
classifi cation rule sets even within these few random examples, a more complex 
classifi cation matching expert intuition can be seen. These types of cases can be 
classifi ed individually by an expert, but defi ning all of that into static rules is not 
feasible, not only because of the sheer number of rules but also the complexity which 
would require statistical calculations to formalise the intuition.

5. CLASSIFICATION RESULTS

The relative class distribution is presented in Figure 13; the Naive Bayes classifi er 
results developed in this paper are prefi xed NB. The remaining classifi cation data are 
based on neural network results from [2]; the raw scan data from the same source is 
used to test the Naive Bayes classifi cation for 2018 and 2019, while the 2020 data set 
has been created specifi cally for this research.

While classifi cation differences can be easily observed, they are explained by the 
varying accuracy ranges between different methods. Although the goal of this research 
was not to analyse the classifi cation, we can identify the main trends in Naive Bayes 
classifi cation. An increase in ICS devices is unexpected in light of worldwide efforts 
to disconnect these devices from the Internet; most likely these are new deployments 
of low impact automation devices. The decrease of INFRA devices is expected with 
a shorter lifecycle of deployments and new deployments following better security 
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practices. The stable proportion of IOT devices is positive, considering the increasing 
number of new deployments. IP cameras, which often require remote reachability, 
see a slight increase, and by contrast, NET devices, which do not, see a signifi cant 
decrease. IP telephony devices experience a stable decrease.

FIGURE 13: THE NEW NB CLASSIFICATION APPLIED FOR 2018–2019 AND NEURAL NETWORK 
CLASSIFICATION

6. CONCLUSIONS AND DISCUSSION

Device classifi cation is an important emerging research fi eld. While existing neural 
network classifi ers already provide classifi cation with high levels of accuracy [2], [9], 
the results are not always understandable by human experts. In some of these cases, it 
is hard to distinguish who is in the right. An expert often has the ability to validate his 
predictions through active probing and other external sources of intelligence. But what 
if the device is not present on the Internet anymore? This often happens because of 
the dynamically assigned IP address change, a device going offl ine or when analysing 
historical data sets. The expert is left with only the feature set and potentially the raw 
data from which features were extracted to make a decision. Features are numerous 
and while clues could be found and even validated using external knowledge, there is 
no confi rmation that these were decisive features in the classifi cation, so no correction 
in the classifi er can be made.
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Understanding the classification brings result transparency – the ability to explain 
the predicted class. With our suggested combined Naive Bayes and LIME approach, 
we were able to demonstrate a reliable method for the explainable classification of 
devices with a web interface being reachable on the Internet. Understanding the 
features used by the model for class prediction permits better analysis of the device 
properties and, consequently, improvements in the classification accuracy via a more 
targeted handling of device data and feature filtering. This approach supports a better 
general understanding of higher risk potentially vulnerable devices on the Internet 
and, subsequently, can increase not only security for the device owner but also overall 
security.
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