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Self-Aware Effective 
Identification and Response 
to Viral Cyber Threats

Abstract: Artificial intelligence (AI) techniques can significantly improve cyber 
security operations if tasks and responsibilities are effectively shared between human 
and machine. AI techniques excel in some situational understanding tasks; for instance, 
classifying intrusions. However, existing AI systems are often overconfident in their 
classification: this reduces the trust of human analysts. Furthermore, sophisticated 
intrusions span across long time periods to reduce their footprint, and each decision to 
respond to a (suspected) attack can have unintended side effects.

In this position paper we show how advanced AI systems handling uncertainty and 
encompassing expert knowledge can lessen the burden on human analysts. In detail:

(1) Effective interaction with the analyst is a key issue for the success of 
an intelligence support system. This involves two issues: a clear and 
unambiguous system-analyst communication, only possible if both share the 
same domain ontology and conceptual framework, and effective interaction, 
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1. INTRODUCTION

The evolution of digital-enabled activities in recent years, also boosted by the 
COVID-19 pandemic, led to profound changes across the digital value-chain, where 
new challenges have emerged and have significantly affected the cyber security 
industry. Cyber security risks are and will become harder and harder to assess and 
interpret due to the growing complexity of the threat landscape, the adversarial 
ecosystem, and the expansion of the attack surface [1]. This will boost the spread of 
attacks from Advanced Persistent Threats (APTs) [2], where fleets of sophisticated 
attackers constantly try to gain and maintain access to networks and the confidential 
information that is contained within them, or to use them as a starting point for further 
attacks.

To illustrate the complexity of attacks from APTs, let us refer to the Lockheed-Martin 
cyber kill chain model [3], which distinguishes seven phases attackers usually follow:

1. Reconnaissance: Research is conducted to identify the targets appropriate to 
meet planned objectives.

2. Weaponization: Malware is coupled with an exploit into a deliverable 
payload. 

3. Delivery: Malware is delivered to the target. 
4. Exploitation: A vulnerability is exploited to gain access to the target.

allowing the analyst to query the system for justifications of the reasoning 
path followed and the results obtained. 

(2) Uncertainty-aware machine learning and reasoning is an effective method 
for anomaly detection, which can provide human operators with alternative 
interpretations of data with an accurate assessment of their confidence. This 
can contribute to reducing misunderstandings and building trust.

(3) An event-processing algorithm including both a neural and a symbolic layer 
can help identify attacks spanning long intervals of time, that would remain 
undetected via a pure neural approach.

(4) Such a symbolic layer is crucial for the human operator to estimate the 
appropriateness of possible responses to a suspected attack by considering 
both the probability that an attack is actually occurring and the impact 
(intended and unintended) of a given response.

Keywords: cyber threat intelligence, machine learning, artificial intelligence
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5. Installation: A persistent backdoor is installed on the victim’s system to 
maintain access over an extended period of time. 

6. Command and Control (C2): Malware establishes a channel to control and 
manipulate the victim’s system.

7. Actions on objectives: After progressing through the first six phases, which 
might take months, the intruder, having access to the victim’s system, can 
easily accomplish the mission goals. 

The cyber kill chain model [3] also illustrates the defence options, namely: detect, 
deny, disrupt (e.g. in-line antiviruses), degrade (e.g. throttling the communication), 
deceive (e.g. using decoys such as honeypots), and destroy.

While [3] does not provide specific guidance on choosing between the various options, 
[4, Fig. 7.1] illustrates how defence – specifically for APTs – is an iterative process 
comprising three steps: sense (continuously sensing adversary actions), observe 
(continuously estimating intent and the capabilities of the adversary), and manipulate 
(delivering cyber deception based on observations). In this paper, we expand on the 
second step, the estimation of the intent and capabilities of adversaries, and embed 
this into the cyber threat intelligence framework (Section 2).

When focusing on cyber threat analysis, the amount of data that needs to be processed, 
the tempo, and the inevitable presence of adversarial actors assembles unique 
challenges that require advanced artificial intelligence (AI) capabilities. Our main 
contribution lies in Section 2, where we illustrate the desiderata for the effective usage 
of AI capabilities in cyber threat analysis. In the rest of the paper, we also discuss 
possible – albeit not all – techniques and technologies to satisfy such desiderata, most 
of which are based on previous work some of us directly contributed to. Our focus is 
on APT attacks that necessarily require a human analyst to assess the situation: less 
dangerous threats can be mitigated with existing tools and techniques, and this will 
not be part of our investigation. In Section 3 we discuss in detail the role of the human 
analyst,1 who is pivotal for the success of cyber threat intelligence. Furthermore, 
systems need to be aware of the presence of adversarial and deceptive actors, hence in 
Section 4 we discuss the need for accurate quantification of uncertainty and propose 
a preliminary approach to this problem for raw data. In Section 5 we discuss the need 
to identify complex activities linked by temporal and causal relationships. Finally, in 
Section 6 we focus on the strategic thinking involved in choosing between alternative 
courses of action to manage APT attacks, in particular that which concerns unwanted 
side effects that might enable the attackers to acquire information of the analyst’s state 
of knowledge and intentions, making them aware that she is aware of their attack.

1 To avoid the awkwardness of strings of he or she, we borrow a convention from linguistics and 
consistently refer to a generic intelligence analyst of one sex and a generic decision-maker of the other. 
The female gender won the coin toss, and will represent the intelligence analyst. Attackers will always be 
referred to in the plural.
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2 Prunckun [5] merges dissemination and feedback, while Pace et al. [46] do not distinguish between 
information collection and data collation, and between report writing and dissemination. Prunckun [5] also 
names step 2 as “Information collection” following the data to wisdom hierarchy [47].

2. BACKGROUND AND DESIDERATA

Cyber threat intelligence is a cyclic process that analysts use to produce knowledge 
about weaknesses in one or more assets in an organisation that can be exploited by 
one or more threats. Like traditional intelligence analysis [6], [5], it comprises several 
steps which, merging the contributions from some of the seminal works in the field,2 
can be summarised as follows:

1. Direction setting: The decision-maker poses a question or requests advice 
(intelligence requirement): we assume this step consists in identifying APT 
attacks and the side effects of countermeasures.

2. Data collection: The analyst collects raw data – network logs from the 
firewalls of her organisation – into shoeboxes. 

3. Data collation: She imposes a standard format – standardising the attributes 
for each log entry – to the data in the shoeboxes to create an evidence file.

4. Data processing: She injects useful semantics (for her task), or schema, 
in the data; for instance, by searching for classes of information such as 
downloads of malware.

5. Data analysis: She creates a case for or against the detection of APT attacks 
by leveraging causal links from within the data, thus building reasonable 
hypotheses. If under attack, she estimates the intent and capabilities of the 
attackers, and highlights issues with available courses of action.

6. Dissemination: She identifies the relevant pieces of knowledge for the 
decision-maker and prepares a presentation that needs to be disseminated to 
the decision-maker.

7. Feedback: She reacts to feedback from the decision-maker, who might ask 
for explanations or relevant details left out of the report, and that might 
become a new intelligence requirement.

Three main loops are identified over these steps [6]: the policy loop, which corresponds 
to the process leading to the identification of intelligence requirements; the foraging 
loop, which moves data from sources to evidence files; and the sensemaking loop, 
which processes data into information and knowledge shared with the decision-maker. 

In this paper we focus on the first two activities associated with the sensemaking loop, 
namely data processing and data analysis. While dissemination and feedback are also 
vital for the success of the enterprise, we will not discuss these in this paper, thus 
silently dropping the decision-maker from the frame. An interested reader is referred 
to [8] and [7] for discussions on how AI can help with writing intelligence reports.
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Within the scope of our study, we introduce four desiderata that AI systems need to 
satisfy to effectively support the analyst.

D1: Putting the analyst at the centre. While the analyst is a highly educated 
and skilled professional, intelligence support tools should minimise the risk of 
misunderstandings and allow for frequent interactions. Studies on the quality of the 
interaction with AI-based systems for situational understanding are scarce, especially 
in the cyber security domain. The analyst should be involved from the very first steps 
of a project and participate in all design decisions. In particular, the interface between 
systems and the analyst should be based on a shared ontology, familiar to the analyst 
but at the same time precise enough to be used by an automated system. The ontology 
needs to be co-designed and continuously refined on the basis of analyst feedback. 
Moreover, systems should allow the analyst to ask for justifications of the reasoning 
path followed by the systems and underlying the obtained results. The possibility to 
ask questions (and receive appropriate answers) contributes by providing her with 
the feeling of having investigated all relevant issues and checked system reasoning. 
In this way, the “not invented here” syndrome  [9] can be avoided and trust in system 
advice and acceptance can significantly increase. 

D2: Embracing uncertainty. There is no such thing as a perfectly certain datum in 
the real world: everything comes with shades of uncertainty. Traditional uncertainty 
estimation approaches in AI aim at quantifying it via probabilities and this can be 
highly misleading. Indeed, there are (at least) two different sources of uncertainty, 
namely aleatoric and epistemic uncertainty [10]. Aleatoric uncertainty refers to the 
variability in the outcome of an experiment which is due to inherently random effects 
(e.g. flipping a fair coin): no additional source of information but Laplace’s daemon 
[11, p. 4] can reduce such variability. Epistemic uncertainty, instead, refers to the 
epistemic state of an agent; hence, it is determined by a lack of knowledge that, in 
principle, can be reduced on the basis of additional data. 

For instance, we can create a vanilla neural network with a softmax final layer that 
takes as input a dataset of Portable Executable (PE) headers4 of pieces of software 
labelled either normal or malware,5 and, for any new PE header, it returns an 
assessment of it being normal or malware. Figure 1 illustrates the case6 with purple 
dots representing normal software and blue representing malware in the considered 
dataset. The yellow area represents the confidence in the class prediction: the darker 
the yellow, the lower the confidence. The dark yellow area lies on the class boundary 

3 That is, a negative attitude to knowledge that originates from a source outside the own institution.
4 Portable Executable (PE) is the format in which Microsoft Windows requires executables to be encoded. It 

is composed of headers and various data and code sections. For further details, https://docs.microsoft.com/
en-us/windows/win32/debug/pe-format#overview (accessed 5 Dec 2020).

5 We limit ourselves to two classes only for illustration purpose.
6 Clearly Figure 1 does not represent a real dataset: here we simplified it substantially by generating a toy 

2D dataset for clarity of presentation.
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and is a manifestation of aleatoric uncertainty: pieces of software close to such a 
boundary have characteristics so similar that distinguishing between them is hard, and 
no additional data can change this. Instead, the lighter yellow areas represent regions 
of high confidence, and that can be the case despite the fact that no data is present there. 
This is a by-product of using the commonly adopted softmax approach that divides 
the entire space of parameters into the set of classes it is trained for (closed world), 
thus leaving no room for uncertainty. This is also the main characteristic exploited in 
adversarial machine learning (like the Fast Gradient Sign Method [12]), where a data 
sample can be modified imperceptibly for a human but enough for a misclassification. 
Consider, for example, the blue star in Figure 1, a piece of malware that was not part 
of our original dataset and is close to the class boundary. A very limited modification 
of its attributes could transform it into the purple star on its right, which would then 
magically transform it into normal software with high confidence. A clear, honest 
assessment of the reliability of predictions is necessary.

FIGURE 1: NORMAL SOFTWARE (PURPLE) VS MALWARE (BLUE) CLASSIFICATION WITH 
CONFIDENCE LEVEL USING SOFTMAX: THE BRIGHTER THE AREA (OF YELLOW), THE GREATER 
THE CONFIDENCE

D3: Recognising complex events. An APT attack is a chain of events linked together 
by time and causality [3]: it is the result of a deliberate design led by human attackers. 
AI systems need to be equipped to reason not only about the detection of single 
events but also, and more importantly, to recognise events linked together by time 
and causality (i.e. complex events) [13]. They also need to easily adapt to evolving 
environments, where changes can occur in very rapid or very slow time frames. 
Having a perfect immutable detector of APT attacks at each stage based on past 
knowledge gives the analyst very little advantage in a world where new vulnerabilities 
are discovered each minute.
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D4: Strategic thinking. When the analyst estimates the intent and capabilities of 
attackers, she must highlight potential side effects of the available courses of actions 
[3], namely: do nothing (always an option), deny (often the most common), disrupt, 
degrade, and deceive.7 For the decision-maker, to choose rationally among these, the 
value of the information the attackers could acquire from the effects of the chosen 
countermeasures should be carefully pondered. It would indeed be naïve to assume 
that the attackers are not operating their own intelligence process. The analyst needs to 
consider the risk that the attackers might discover that she has some level of awareness 
of their operations (see the concept of high-order theory of mind [14]). There might 
also be cases where do nothing is a reasonable choice, like in the case of the accident 
at the Lawrence Berkeley Laboratory (USA) in August 1986 [15], where persistent 
intruders were found in a relatively low-value network as part of an “island-hopping” 
attack [16] towards a much higher value target. By tracing their activities for nearly 
one year, and employing deception warily, the attackers were found and proved to be 
connected to the KGB [17].

In the following sections we expand on technical solutions that can help satisfy each 
of the four desiderata illustrated above.

3. PUTTING THE ANALYST AT THE CENTRE

Supporting the analyst’s critical thinking when facing complex, intricate menaces from 
APTs is not trivial. To benefit from using decision-support AI systems, the analyst 
must have an appropriately calibrated level of trust in the system [18], [19]. Trust 
is well calibrated when she sets her trust level appropriately to the AI’s capabilities, 
accepting the output of a competent system but employing other resources or her 
own expertise to compensate for possible AI errors; conversely, poorly calibrated trust 
reduces team performance because she might trust erroneous AI outputs or not accept 
accurate ones [18], [20], [19].

Two problems stand out. First, it is necessary to create a stock of shared knowledge 
between the analyst and the artificial system she is using in order to understand 
the complex assessments that generally come with data analysis through machine 
learning and the intricate relationships between events composing an attack. Second, 
the analyst needs to be allowed to question the system and receive justifications for 
the results obtained and the reasoning processes behind them.

As far as the former issue is concerned, we argue in favour of using shared ontologies 
– as part of the community has already started doing; for example, [21] where domain 
entities and the relationships between them can be explicitly represented, thus 

7 Albeit destroy is also an option, we will not investigate it in this paper.
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clarifying the semantics for each of them. In this way, it is easier to share concepts 
with AI tools, as well as collecting and representing the analyst’s knowledge and 
experience. However, querying such ontologies, thus allowing her to navigate the 
inevitable intricate, interrelated structures in it, soon becomes very challenging. 
Visual inspection is ineffective beyond a certain size threshold, while existing query 
languages, such as SPARQL, are often beyond the abilities of an analyst. We argue in 
favour of Controlled Natural Languages (CNL); in other words, “engineered subsets of 
natural languages whose grammar and vocabulary have been restricted in a systematic 
way in order to reduce both ambiguity and complexity of full natural languages” [22], 
while not being so restricted as a formal language. In particular, highly precise and 
expressive CNLs – according to the classification provided in [23] – could potentially 
be used as an intermediate representation between analyst and AI system, and some 
have also been employed in preliminary studies to facilitate human-machine joint 
analytical processing [24], [25], although a comprehensive assessment is still lacking. 
Last but not least, ontologies should also account for the uncertainty that inevitably 
affects all steps in the cyber threat intelligence cycle: a clear representation and 
communication of uncertainty plays a central role in building trust [26], [19].

As far as the latter issue is concerned, the possibility to ask the system for and obtain 
detailed justifications about the advice provided and the reasoning path exploited for 
its generation is of paramount importance. We argue that interactive interfaces must 
support an effective analyst-driven dialogue with the AI system, either at specific 
steps in the intelligence process or according to an interrupt-based protocol, where the 
user is allowed to ask the system at any moment during its operation. The dialogue 
can be based on CNL and organised according to a simple question-answer schema 
we co-designed [25], allowing, however, for a variety of questions that cover most 
of the possible information needs of the analyst, such as, for example, “justify your 
advice” (make the reasoning process behind the advice explicit) or “show alternatives” 
(illustrate possible alternative analyses and explain why they have been discarded).

4. EMBRACING UNCERTAINTY

Uncertainty pervades the entire cyber threat intelligence cycle, including the 
recognition of complex events linked by temporal and causal relations (Section 5) 
and strategic reasoning about the side effects of possible countermeasures (Section 6). 
Due to space constraints in this paper, we focus only on uncertainty when processing 
data.

The Bayesian paradigm of mathematical statistics is one of the most powerful 
tools we have for estimating aleatoric and epistemic uncertainty. It is based on an 
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interpretation of probability as a rational, conditional measure of uncertainty [27]. 
Pure Bayesian methods are unfeasible due to the gargantuan amount of data needed, 
but they can be approximated by using, for instance, Evidential Deep Learning with 
Noise Contrasting Estimation (EDL-NCE), which we co-designed [28], [19] and that 
requires less computational power and data. The main approximation behind EDL-
NCE is that the posterior probability that, for instance, recalling our example from 
Section 2, a piece of software  is malware, 𝑝(𝑚𝑎𝑙𝑤𝑎𝑟𝑒 ⎸ ), is forced to be Beta-
distributed or Dirichlet-distributed if we are considering more than two classes.8 

Figure 2 illustrates the result of the classification using EDL-NCE [28] on the dataset 
we introduced in Section 2 (see Figure 1). From a visual inspection we can appreciate 
how EDL-NCE derives an implicit class density estimation represented by the shades 
of yellow illustrating the confidence in the classification in Figure 2.

FIGURE 2: NORMAL SOFTWARE (PURPLE) VS MALWARE (BLUE) CLASSIFICATION WITH 
CONFIDENCE LEVEL USING EDL-NCE [28]: THE BRIGHTER THE AREA, THE GREATER THE 
CONFIDENCE

A Beta distribution needs two parameters representing the amount of evidence in 
favour of the two classes we are considering. For instance, let us consider again the 
star datapoint in Figure 2: by using EDL-NCE, we can compute 𝑝(𝑚𝑎𝑙𝑤𝑎𝑟𝑒 ⎸ ) = 
Beta(7,5) (Figure 3(a)), which informs us that we have slightly more evidence in 
favour of it being a piece of malware than the opposite. With reference to Figure 3(a), 
we can note that (1) the expected value is 0.583, thus suggesting we are very close to 
the class boundary and then we have high aleatoric uncertainty, and (2) the variance 

8 Random variables with two outcomes (e.g. tossing a coin, or detecting normal software vs 
malware) are known to follow the Bernulli distribution . 
If we then want to assess the value of π from some given data samples, we can use the Bayes 
theorem to compute the posterior distribution  on the basis of a chosen 
prior . Since we know that Beta distribution is the conjugate for the Bernoulli, given 

, we have that  
that represents a distribution of probabilities for the phenomenon we were addressing. The generalisation 
of the Beta distribution to k > 2 outcomes (e.g. rolling a dice) is the Dirichlet distribution.
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is 2.07E-2, thus suggesting a rather wide 95% confidence interval – identified by the 
shaded blue area under the curve of the distribution in Figure 3(a) – and then we have 
rather high epistemic uncertainty. Resuming the discussion presented in Section 2 
(see point D2), note that a tiny manipulation of the PE headers of the star datapoint 
considered above might transform it into a Beta distribution with an expected value 
of less than 0.5; therefore, using a discriminative approach like softmax, it would 
be classified as normal software, but it would not have much effect on the epistemic 
uncertainty, and thus on the 95% confidence interval. 

Beta distributions can be mapped directly into subjective logic opinions [29], namely 
a tuple of three values representing the belief, disbelief, and uncertainty in a given 
proposition. Since the three values must be non-negative, and must sum up to one, they 
identify a triangle in a 3D space that can easily be flattened in the 2D space depicted 
in Figure 3(b) as each subjective logic opinion becomes a point in the triangle [30]. 
In it, the vertical is the axis of confidence and it is a direct manifestation of epistemic 
uncertainty, from no confidence to total confidence; while the horizontal is the axis 
of likelihood, linked to aleatoric uncertainty, from absolutely not likely to absolutely 
likely. This space can be divided into different regions, each of which can be associated 
by a code – for example, 4C, similar to the admiralty code [5] already in use in the 
intelligence community – and by a couple of textual labels, such as somewhat likely 
with some confidence. Thanks to our previous evaluation of interfaces for decision 
support exposing labels representing subjective logic opinions, we argue that this 
has potential for creating understanding about epistemic and aleatoric uncertainty in 
highly-skilled personnel [25], which an analyst is supposed to be, and anecdotical 
evidence also suggests that decision-makers, such as physicians, appreciate the 
possibility of rapidly comparing the uncertainty associated with multiple reports using 
visual inspections of areas within the triangle. In our example, from Figure 3(b), we 
can see that the very same tiny manipulation that would have led a softmax approach 
to misclassify malware as normal software with high confidence now would not have 
much effect: in both cases – the original and the manipulated one – the classification 
shows that chances are about even with low confidence.
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FIGURE 3: (A) GRAPHICAL REPRESENTATION OF 𝑝(𝑚𝑎𝑙𝑤𝑎𝑟𝑒 ⎸ ) = Beta(7,5), FOR  BEING 
THE STAR DATA SAMPLE IN FIGURE 2. (B) IN BLUE THE REPRESENTATION OF BETA(7, 5) AS A 
SUBJECTIVE LOGIC OPINION AND IN PURPLE THE REPRESENTATION OF THE CLASSIFICATION OF 
THE MANIPULATED INPUT INTO THE PURPLE STAR IN AN ELABORATION OF JØSANG’S [29, P. 49] 
SPACE OF SUBJECTIVE LOGIC OPINIONS

An approach to uncertainty based on subjective opinions can yield much more robust 
systems and, as discussed in Section 3, can help build trust with the analyst. 

5. RECOGNISING COMPLEX EVENTS 

Each APT attack is a set of chains of events linked together by time and causality [3] 
(see Section 1). We therefore advocate the use of complex event processing systems 
[13]. Following Luckham’s [13] definitions – and differently from the everyday usage 
of the term event – an event is a computing object that signifies an activity that has 
happened. It has attributes such as the activity it represents and a timestamp or time 
intervals. Events can be linked by relationships of time, causality, and aggregation. If 
event 𝐴 represents an activity that consists of the activities signified by a set of events 
𝐵₁,𝐵₂,…,𝐵�, then 𝐴 is a complex event; in other words, it is an aggregation of all the 
events 𝐵�; conversely, 𝐵� are members of 𝐴. Aggregation is a tool for making the 
activities in a complex system understandable to humans [13] and is the fundamental 
component in an event abstraction hierarchy that induces a sequence of levels such 
that the events in each level are defined on the basis of an aggregation of events at 
previous levels via aggregation rules. Clearly this applies to all the levels except the 
first one – conventionally Level 0 – which does not contain complex events. 

(a) (b)
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For instance, the analyst might start looking into the evidence file containing network 
traces of HTTP(S) connections. Figure 4 illustrates the situation we specifically devised 
for this research: on the left there are the network logs collected in the evidence file. 
Activities are transformed into events thanks to a neural network trained to detect the 
type of URL, which might be a NEWS outlet, or a SEARCH engine, or the beginning 
of a download – an EXEC file, or even a PHISHING website (i.e. cloning a website 
to pose as it while delivering a malicious payload). Events might trigger the creation 
of other events: in the figure, downloading an EXEC has led to analysing it using a 
malware detector similar to the one we illustrated in Section 4, and that concluded 
that it is likely with high confidence (certainty: 3B) that it is a trojan; that is, 
malware misleading the user about its intent. An aggregation rule is then triggered and 
generates a complex event that signifies the detection of the delivery of a weapon as 
part of possible APT attacks.

FIGURE 4: ILLUSTRATION OF DETECTING THE DELIVERY OF AN APT WEAPON AS A COMPLEX 
EVENT. TIME FLOWS FROM TOP TO BOTTOM. ARROWS MARKED WITH  REPRESENT DATA 
PROCESSING VIA NEURAL NETWORKS. ATTRIBUTES ARE REPRESENTED IN JSON-LIKE SYNTAX. 
ARROWS LABELLED WITH CAUSES REPRESENT CAUSAL RELATIONSHIPS BETWEEN EVENTS. 
BLACK DIAMONDS REPRESENT AGGREGATION RULES. 

Two limiting factors emerge. The first is the identification of relationships between 
events, in particular the aggregation rules. They can either be elicited by domain 
experts, or they can be learnt from annotated datasets of sequences of events by 
leveraging, for instance, inductive logic programming [31]. However, it is beyond 
doubt that high-quality [32] domain knowledge expressed as aggregation rules must 
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be curated and maintained, and this adds additional weight to the usage of suitable 
(controlled natural) languages (see Section 3). 

The second problem is linked to adaptability to new weapons. Existing approaches 
using complex event processing for detecting APT attacks (e.g. [34] and [33]) assume 
that each of the models used to create events is separately trained on top of existing 
curated datasets: in the world of viral threats, this lack of adaptability is unsustainable. 
Adaptability to new contexts is the basis of novel, neuro-symbolic approaches to 
(simplified) complex event processing [35], [36]. Such approaches, which we co-
designed, require as input only raw pieces of information (the logs identifying the 
activities, left of Figure 4), sets of aggregation rules, and the final labels. By leveraging 
approaches such as [37], linking together symbolic knowledge (aggregation rules) 
with sub-symbolic data processing (the identification of events from raw data), they 
can train classifiers for the various events of interest, such as PHISHING, EXEC 
and TROJAN, without the need to provide specific information about them. Using 
synthetically generated raw data, we gathered evidence in favour of this, although 
much more is left to do.

The identification of an event abstraction hierarchy is paramount for integrating not 
only SIGINT,9 but also unstructured or semi-structured OSINT,10 for instance, by 
fusing activity reports from both Clearnet and Darknet. By focusing on causal and 
aggregation relationships, this climbing of the semantic ladder is argumentative and 
adheres to the best practices of critical thinking [38], [39]. 

6. STRATEGIC THINKING

Let us now assume that a threat has been detected. The analyst now needs to estimate 
the intent and capabilities of attackers, and highlight issues with possible courses of 
action [3]. Strategic thinking is thus needed in choosing between alternative courses 
of action to manage APT attacks, in particular in respect to unwanted side effects that 
might enable the attackers to acquire information on the analyst’s state of knowledge 
and intentions, making them aware that she is aware of their attack. For simplicity, let 
us consider only deny and deceive. 

We therefore argue that it is necessary to explicitly acknowledge the existence of a 
communication link with the attackers, who will receive information about (1) our 
analyst’s defence capabilities for detection and (2) the value of the resources she is 
protecting. We can thus leverage AI techniques such as Controlled Query Evaluation 

9 SIGINT—SIGnal INTelligence—includes either individually or in combination all communications 
intelligence, electronic intelligence, and instrumentation signals intelligence, in whatever way transmitted.

10 OSINT—Open Source INTelligence—includes media, internet (both Clearnet and Darknet), governmental 
data, professional publications as well as grey literature such as technical reports or preprints, commercial 
data, etc.
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(CQE) [40], where an agent is defending some knowledge encoded in a database 
against an attacker who can perform queries on it. The defender can choose how to 
answer such queries but is compelled to obey secrecy constraints.

For instance, let us assume the analyst uses the graph database illustrated in  
Figure 5, where boxed labels represent classes, while unboxed ones represent objects 
instantiating (is-a) a class. We assume the existence of the causedBy, composedBy, 
and from relationships among objects; their semantics is linked to the complex event 
processing procedure illustrated in Section 5; for instance, E04 is an EVENT derived 
from LOG04, which is an ACTIVITY. Let us also assume that our ability to detect that 
the downloaded file is a trojan (event E05) is based on a machine learning algorithm 
trained on a dataset containing raw data about possible malware that we carefully 
created within our organisation, and that it is in the company’s interest to keep it 
private. This is represented in Figure 5 by a black box (PRIVATE DATASET) since it 
contains black knowledge; that is, knowledge that should not be disclosed. 

Terminating the attack by shutting the connection (denying) after E05 and triggering 
the creation of E06, which makes the analyst aware of the presence of an attack, 
might seem a reasonable choice. This, however, might signal the attackers that the 
analyst has access to superior knowledge – compared to the community – about the 
used malware. She needs to assume that the attackers are also able to detect E02 and 
E04, as the target interacted with a remote server at least partially under their control. 
By using, for example, CQE, over a probabilistic version of the graph database 
illustrated in Figure 5, we can now answer the question: what is the probability that 
in revealing E06 we also reveal E05? Since E06 builds on E02, which is informed 
by a public dataset, there is a reasonable argument suggesting that denying the attack 
can be explained only on the basis of publicly available information. For instance, all 
downloads from such URLs can be quarantined or sandboxed. 
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FIGURE 5: GRAPH DATABASE REPRESENTING THE DETECTION OF THE DELIVERY OF AN APT 
WEAPON (SEE FIGURE 4)

Inheriting uncertainty quantification about events and complex events from the 
previous processing and analysis steps (see Sections 4 and 5) and performing CQE 
over probabilistic knowledge bases makes it possible to encompass both epistemic 
and aleatoric uncertainties, as we showed in [41] and [42], thus providing the analyst 
with a computational mechanism for risk evaluation. This can also be used to derive 
a utility function to be used in state-of-the-art game theory approaches for choosing 
mitigation techniques [44], [43, Chs. 4, 5], [4]. These topics are, however, beyond the 
limits of this paper.

To conclude, considering at least one level into the high-order theory of mind coupled 
with epistemic and aleatoric uncertainty brings us closer to the real world, while at the 
same time revealing the complexity of the task and the need for self-aware artificial 
intelligence.

7. CONCLUSIONS

The threat landscape, adversarial ecosystem, and expansion of the attack surface all 
together link to an environment of staggering complexity where viral threats affect the 
entire fabric of our interconnected world. Optimising for the known threats only is not 
enough: we need to build resilient systems that embrace uncertainty and adapt to new 
types of complex attacks. 
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In this paper we embed defence against APT attacks into the cyber threat intelligence 
framework, and illustrate how self-aware AI tools can be used for building resilience 
and lessening the burden on the human analyst, who must always be at the centre of 
the design process.

We show that uncertainty-aware learning and reasoning can be an effective method for 
anomaly detection, which can provide human operators with alternative interpretations 
of data and accurate assessments of their confidence. This reduces misunderstandings 
and builds trust, while also reducing attackers’ options for camouflage. Event 
processing algorithms can identify attacks spanning long intervals of time, which 
would remain undetected even by state-of-the-art intrusion detection systems. Finally, 
climbing the ladder of semantics is crucial for estimating the appropriateness of 
different responses to a suspected attack, and the impact (intended and unintended) of 
a given response.

Several avenues are ahead of us, including further experimental analyses that are 
already planned, but here we would like to mention one in particular that, due to space 
constraints, we left out, but that must be remarked upon. Although in this paper we 
implicitly assumed a centralised approach – that is, an analyst or a group of analysts 
overseeing the cyber infrastructure of a large organisation – the reality is that the 
staggering complexity of the task might require a more distributed approach, which 
can be achieved by as much as possible empowering autonomous agents at the edge 
of the network to collaborate with a single intent: a sort of team of teams [45] with 
the same purpose and shared knowledge. To this end, a possible strategy is to couple 
each analyst with an autonomous surrogate that, via reinforcement learning, could 
approximate the decision of its human counterpart and thus reduce even further the 
burden on human experts especially for the most trivial tasks.
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