
255

An Automated Bot
Detection System through
Honeypots for Large-Scale

Abstract: One of the purposes of active cyber defense systems is identifying infected machines
in enterprise networks that are presumably root cause and main agent of various cyber-attacks.
To achieve this, researchers have suggested many detection systems that rely on host-monitoring
techniques and require deep packet inspection or which are trained by malware samples by
applying machine learning and clustering techniques. To our knowledge, most approaches are
either lack of being deployed easily to real enterprise networks, because of practicability of
their training system which is supposed to be trained by malware samples or dependent to host-
based or deep packet inspection analysis which requires a big amount of storage capacity for
an enterprise. Beside this, honeypot systems are mostly used to collect malware samples for
analysis purposes and identify coming attacks.

Rather than keeping experimental results of bot detection techniques as theory and using
honeypots for only analysis purposes, in this paper, we present a novel automated bot-infected

Fatih Haltaş
Cyber Security Institute
The Scientifi c and Technological Research
Council of Turkey
Ankara, Turkey
fatih.haltas@tubitak.gov.tr

Erkam Uzun
Computer Engineering
TOBB University of Economics
& Technology
Ankara, Turkey
euzun@etu.edu.tr

 Necati Şişeci
Cyber Security Institute
The Scientifi c and Technological Research
Council of Turkey
Kocaeli, Turkey
necati.siseci@tubitak.gov.tr

Abdulkadir Poşul
Cyber Security Institute
The Scientifi c and Technological Research
Council of Turkey
Kocaeli, Turkey
abdulkadir.posul@tubitak.gov.tr

Bakır Emre
Cyber Security Institute
The Scientifi c and Technological Research
Council of Turkey
Kocaeli, Turkey
bakir.emre@tubitak.gov.tr

2014 6th International Conference on Cyber Confl ict
P.Brangetto, M.Maybaum, J.Stinissen (Eds.)
2014 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal use within
NATO and for personal or educational use when for non-profi t or non-commercial
purposes is granted providing that copies bear this notice and a full citation on the
first page. Any other reproduction or transmission requires prior written permission
by NATO CCD COE.

256

1. INTRODUCTION

Attackers, astutely, perform their attacks in a well-organized and automated way by leveraging
infected zombie machines, for which, enterprise network is preferable basin [1], [2]. Since,
infected machines are key players in Cyber-attacks, cleansing them is one of main goals for
Active Cyber Defense Systems, thereby, initial step is inevitably, diagnosis. In other words,
effectuating a practical and scalable system with capability of withstanding expeditiously
growing and enhancing malwares to identify infected machines in an enterprise network has
high priority in technologies to be improved within the technical domain of Active Cyber
Defense.

There has been extensive work on identifying infected machines, mostly rely on host-based
analyses that are feeble against today’s malwares with complicated hiding techniques.
Acknowledging that they retain a signifi cance role in intrusion analysis, resting only on them
can be imprudent as many intruders run wild inside the network in which host machines are
armored with at least a couple of host-based security solutions, while those solutions do not
provide any clue to system administrators.

In the meantime, numerous researches suggest the use of network related data to detect infected
machine or benefi t them as auxiliary to host-based systems [3], [4] and [5]. Some detection
methodologies might require deep-packet inspection that is overcharge for an enterprise and
not successful in the scenario of encrypted communication preferred as command and control
channel by malwares. Availability of raw data and time-scalability of processing DPI data are
important obstacles to deploy an automated detection system within an enterprise network. To
surmount these issues, some of detection system methodologies ([6], [7], [8]) are developed to
identify infected machines by using NetFlow standard data that is widely stored in an enterprise
network [9].

machine detection system BFH (BotFinder through Honeypots), based on BotFinder, that
identifi es infected hosts in a real enterprise network by learning approach. Our solution, relies
on NetFlow data, is capable of detecting bots which are infected by most-recent malwares
whose samples are caught via 97 different honeypot systems. We train BFH by created models,
according to malware samples, provided and updated by 97 honeypot systems. BFH system
automatically sends caught malwares to classifi cation unit to construct family groups. Later,
samples are automatically given to training unit for modeling and perform detection over
NetFlow data. Results are double checked by using full packet capture of a month and through
tools that identify rogue domains. Our results show that BFH is able to detect infected hosts with
very few false-positive rates and successful on handling most-recent malware families since it
is fed by 97 Honeypot and it supports large networks with scalability of Hadoop infrastructure,
as deployed in a large-scale enterprise network in Turkey.

Keywords: Botnet, honeypots, NetFlow analysis, machine learning

257

Because of the limited information within NetFlow data, researchers should conduct a wise
statistical analysis to conclude it with malicious activity detection. For that matter, some
researchers suggest to include malware families’ statistical NetFlow values by leveraging the
machine learning techniques and training their systems through beforehand-created models [6],
[8]. Some of the challenges here are creating a successful model by using malwares that might
feed detection system featly and feature selection that creates utilitarian models. Moreover,
they are mostly lack of being deployed in an enterprise network because of modeling unit that
requires to be trained by most recent malwares and should be kept up-to-date.

Aforementioned limitations of current automated bot-detection technologies and stealthiness
of recently introduced bots, which are not only send spam or conduct DoS attack but also steal
sensitive data over encrypted C&C channels [1], [10], inspire us to design a more applicable,
scalable and self-updated automated individual bot detection system with high detection rate,
indeed, it was a corollary of a need for such system to an enterprise network in Turkey.

In this paper, we present BFH (BotFinder through Honeypots) automated bot-infected machine
detection system, based on BotFinder [8], relying on exclusively NetFlow data and leveraging
the capability of Honeypots on collecting topical malware samples and utilizing the scalability
of Hadoop infrastructure and MapReduce programming logic. In particular, our system consists
of three important units, which are Cyber Threat Monitoring Unit, modeling and matching units
which trade on Hadoop system.

Cyber Threat Monitoring System (CTMS) unit is, basically, a comprehensive system, developed
by our team within the scope of European Unions SysSec project [11]. In BFH system, we
benefi t its capability of collecting and classifying most recent malwares through 97 honeypots,
beside this; it is cultivated with the extension of an aptitude for NetFlow generation of malware
families. In a nutshell, this produces preliminary data in order to feed modeling unit.

Modeling and matching units of BFH are implemented based upon BotFinder’s methodology
with an additional feature analysis. Multi-faceted models are acutely crafted after execution of
samples for each malware family in a controlled environment, handled as component of CTMS,
through using NetFlow-based features that characterize a malware family communication
pattern and by identifying similarities in following demeanors; (i) temporal behavior of
fl ows, (ii) outgoing and incoming data size characteristics, (iii) duration of connections, (iv)
communication regularity, (v) data accumulation regularity. These features are also calculated,
during trace extraction part, on NetFlow data of investigated enterprise network and used
in matching unit and worked out to identify bot-like machine activities. Since an enterprise
network consists of a numerous number of hosts and large amount of fl ow records that should
be stored long for better results, our system leverages the Hadoop infrastructure and map-
reduce programming logic[12].

An extensive evaluation of BFH is provided in a large-scale enterprise network in Turkey, BFH
is deployed. Modeling unit of BFH is automatically trained by caught and classifi ed malwares
which are still active, at least in Turkish Networks, as they are caught through 97 Honeypots,
that are live more than four months. Based on models, BFH runs over subjected enterprise

258

network whose pcap data is logged for affi rmation purposes for a month. Our evaluation
demonstrates that BFH is able to detect malicious activity in the network traffi c of bot-infected
machines with high accuracy in a reasonable scale for an enterprise. In substance, contributions
of this paper are as follows:

• We introduce BFH (BotFinder through Honeypots); a vigilant automated bot-
detection system, which leverages capability of Honeypots on collecting recent
malwares and scalability of Hadoop infrastructure to increase applicability to an
enterprise.

• We present BFH (BotFinder through Honeypots) that strengthen BotFinder’s model
generating approach with extra feature analysis, examining similarities of stolen data
size over time in C&C communication of a bot family.

• We consolidate that C&C communication traffi c of bot families has some similarities,
even in most recent bot families in the wild as they are caught lively and exploit these
similarities on detecting bot-infected machine by only analyzing NetFlow data that
provides successful detection even on encrypted or obfuscated traffi c.

2. RELATED WORK

Botnet detection studies over network data include multiple approaches. However, to our
knowledge, honeypots are not actively involved in the individual bot detection systems though
yet they have been benefi ted. BotMiner [13], BotGrep [14] and BotTrack [7] typify the approach
on correlating NetFlow data and detect P2P bots through their C&C topology. They propose
to identify the hosts that build up P2P networks by clustering them and discriminate rogue
and benign groups benefi ting the information on infected machines, gathered from several
sources such as IDS and honeypots. On that sense, they are instances of bot detection systems,
utilizing the use of Honeypots. However, they are restricted with IDS signatures, which may be
insuffi cient as attackers evolve bots shrewdly to be more disguised.

Aforementioned studies do not only capitalize on NetFlow analysis. Indeed, there exist only
a few papers, specifi cally focusing on it. For instance, Livadas et al. [15] focuses on IRC-
based botnets through classifi cation methodology based on machine-learning. Francois et al.
[7] leverages PageRank algorithm on NetFlow-based approach to detect P2P botnets [16]. They
both focus on particular type of traffi c.

On the other hand, BotFinder detects malware infections by exploiting traffi c patterns
characteristics of them, yet it should be extended to detect malwares, performing non-periodic
communication patterns. While not conclusive, BFH proposes a way of smoothing this out
by additional feature analysis. BFH provides practicality in an enterprise network by keeping
training module updated via Honeypots. It is also a signifi cant illustration of applicability
of BotFinder that BFH is a live system with some improvements, deployed to an enterprise
network. Furthermore, BFH upgrades infrastructure for scalability concern to Hadoop and
processes data.

259

Lastly, Disclosure suggests a distinct approach to detect botnet over large-scale NetFlow
analysis [6]. Disclosure exhibits similar approach to BotFinder on which BFH is based upon,
yet, it detects C&C servers. Giroire et al. [17] has similar approach to BotFinder, albeit, it
differs in malware detection methodology.

3. SYSTEM OVERVIEW

BFH operates in two phases as training and investigation. Detection models based on statistical
features are generated for each malware families in training phase. Investigation phase includes
extracting same statistical feature extraction for test data and matching unit which compares
test data with each of the malware family models to detect whether incoming data belongs to
an infected machine or not.

Figure 1 shows an overview of the system architecture. In the training phase, after collecting
malwares honeypots, a classifi cation unit classifi es the malwares in different families. Then,
NetFlow data is generated after executing samples of each malware families. Afterwards,
the trace extraction is conducted to the NetFlow data of each malware family and ordered
connections are listed between internal and external IP addresses on a given destination port.
After extracting trace data, six statistical features are calculated for each member of families.
These features are the average time between the start times of two consecutive fl ows in the trace,
the average duration of a connection, the number of bytes on average transferred to the source
and to the destination, the Fourier Transformation over the fl ow start times in the trace and the
ratio of outgoing data difference over time difference between the start times of two subsequent
fl ows [8]. In the modelling unit, multiple binary classifi cation models for each malware families
are created by combining all the feature vectors of the members of corresponding family.

Finally, in the matching unit, each of the produced feature vectors for evaluated traces is
subjected to classifi cation via all detection models that are created in the training phase with
a particular clustering algorithm in a sequential fashion. If any of the detection models raise
an alert for an examined trace in the matching unit, it is assumed that the internal IP in this
particular trace is infected.

4. SYSTEM DETAILS

A. Cyber Threat Monitoring System (CTMS)
The input data we need for our detection models is collected through distributed sensors located
in wide area as traffi c capture. For collecting this input data we propose an infrastructure
(CTMS) which comprises to two main parts; distributed sensors and malware detection centre.
Malware detection centre is composed of sub modules such as virtualization servers which are
hosted low and high interaction honeypots, network traffi c monitoring systems such as NetFlow
collection and aggregation unit, IDS and anti-virus scanners. In this step, it is important to
correctly classify the collected input data through honeypots so that different samples of same
malware family are analysed together. Thus, an actual classifi cation unit which includes anti-
virus scanners is used in this work.

260

B. Honeypots, NetFlow Generation and Classifi cation Unit

1) Honeypots
The main feature of a honeypot is to collect attack records and malware samples by imitating
networks, network services, operating systems or applications. Honeypots are classifi ed
depending on their abilities as low and high interaction or their roles as server sided and client
sided. In our work, we use four types of honeypots as collectors (ColA , ColB) and generators
(GenA , GenB) which are responsible for catching malwares from internet and generating
malware communication, respectively. While URLs and attachments of spam mails and web
crawlers are used as source for GenA , GenB and ColA honeypots, other malwares are captured
by ColB honeypot. GenA honeypot is responsible for the execution of spam mail attachments
whereas ColA honeypot runs detected URLs from spam mails. Detailed explanations about
these honeypots are as follows;

FIGURE 1: SYSTEM OVERVIEW

261

• GenA: Windows XP operating system running on a virtualization environment. Three
GenA high interaction honeypots are used in our environment.

• GenB: Windows XP and Windows Vista operating systems running on a server with
2.5 GHz CPU and 2 GB RAM. Three GenB machines are used as sandbox.

• ColA: A client side low interaction honeypot aimed at mimicking the behaviour of a
web browser in order to detect and emulate malicious contents [18].

• ColB: A server side low interaction honeypot that captures attack payloads and
malwares [19].

2) NetFlow Generation
GenA executes each malware samples fi ve or more times in CTMS environment. After executing
and generating trace of fl ow, we restore virtual machines to clean state and then GenA prepares
itself for new malware execution. Same process is repeated for GenB. Nevertheless, this process
is more complicated than the cleaning state in GenA because of requirement of operating system
reinstallation on the server.

Since some malware families are virtual machine (VM) aware that can recognize the virtualized
environment and alters behaviour accordingly, we alter the settings by changing original
manufacturer information of the VM with a pseudo one, removing or changing registry keys
containing VM keyword, changing MAC address identifi ed as VM Ethernet cards, changing
disk settings such as serial number, fi rmware number etc. and killing particular service threads
which indicate VM existence to delude the VM-aware malwares.

3) Classifi cation Unit (Virus.Mu?)
A custom malware classifi cation module called Virus.Mu?, (meaning “Is it virus?” in Turkish)
similar to VirusTotal which is multi engine online virus scanner [20], is implemented by using
actual versions of various antivirus products from different vendors on isolated VMs [11]. After
appending malware samples and suspicious documents gathered by honeypots to a queue, each
antivirus product scans the queue. If a suspicious fi le in the queue is identifi ed as malicious, it
is tagged based on common keyword in virus naming scheme of corresponding vendor. Then,
different naming scheme correlated with the same malware family are used to get exact family
name. For instance, a Waledac malware sample is tagged as Email-Worm.Win32.Iksmas.gen,
Mal/WaledPak-A and Trojan:Win32/Waledac.gen!A by Kaspersky, Sophos and Microsoft,
respectively. In addition to Virus.Mu?, we use Suricata-IDS with the Emerging Threats Pro
Ruleset (ETPro) which delivers network based malware threat detection rule set [21], [22]. This
rule set contains newly detected malwares’ signatures, thus, we can validate Virus.Mu? and IDS
alerts in our development network.

C. Features

1) Trace Extraction
As a preliminary phase for some statistical and computational features we extract traces from
NetFlow data. Traces, representing consequent fl ows in terms of chronological order are the
most commonly used concepts in bot detection algorithms. Since we apply trace extraction unit
both training and investigation data, we have to whitelist common Internet services such as

262

Microsoft, Google, Akamai, update services, fi le-sharing services such as SharePoint, DropBox
etc. Another fi ltering process is applied by comparing the destination IP with most known C&C
servers. Flows are eliminated and our trained models are more likely to capture only bot traffi c.
As a result, the fi ltering process in trace extraction has a mediate impact on malware detection
results.

2) Feature Extraction
Later, we utilize statistical features such as average time interval, average connection duration,
average number of source bytes per fl ow, average number of destination bytes per fl ow,
communication regularity and outgoing data accumulation regularity. Each statistical feature
is computed on subsequent fl ow pairs. Features are briefl y as follow: ([8] gives detailed
explanations for fi rst fi ve ones):

• Average Time Interval: It refl ects the average time interval between two subsequent
fl ows in the trace. This measure detects the periodic characteristics occurred in C&C
connections. Most of the malwares intent to use a constant time interval or a random
interval time within a constant value between two connection periods.

• Average Duration of Connections: Since a malware runs same process in each
connection, it is expected that the duration of different connections of a malware
might be similar and different than human-computer interaction. Therefore,
computing this statistic helps to distinguish a malware connection from normal ones.

• Average Number of Source and Destination Bytes per Flow: As the same
motivation with the previous feature, it is expected that a specifi c C&C server will
send same commands to a target machine. Thus, the average number of bytes has a
characteristic structure in a C&C trace. Similar consideration will be in charge in
destinations bytes. A target machine will give a fi xed response to a particular C&C
server.

• Communication Regularity: We apply Fast Fourier Transform to the binary
sampled C&C communication to detect communication regularities. While doing
this we sample our connection start time as 1 and 1/4th of the smallest connection
interval slops as 0. Afterwards, we compute the Power Spectral Density (PSD) of the
Fast Fourier Transformation over our sampled trace and extract the most signifi cant
frequency. This helps us to detect even randomly varied C&C connections within a
certain range to an extent.

• Data Accumulation: We apply a new feature in addition to [8] for detecting malwares
with randomly changed duration within two subsequent fl ows in a trace. This measure
is calculated as average value of the each ratio of data size difference between two
subsequent fl ows to difference of start times of them. Since the connection times of
such fl ows may be extended because of communication problems with C&C, the
accumulated data amount, which is produced by victim and stolen by an attacker,
in the following connection in such a case will grow up, especially in malware with
keylogger payload. Thus, characterizing the accumulated data amount per second
between two connections might exhibit similarities

263

D. Model Creation and Detection Unit
The basic assumption behind the usage of a machine learning algorithm in detection module
is that malwares leave proprietary patterns of traffi c or behaviour, which could be tracked over
traces, within the target machine. Our desired outcome is to raise an alert if the NetFlow data
gathered from investigated traffi c includes a known pattern belongs well-known and actual
malwares. Thus, we use a supervised machine learning algorithm based on several statistical
features, explained in previous section, instead of one of the unsupervised algorithms which do
not need any training data and are mostly used to cluster similar data within isolated groups.

A supervised machine learning algorithm in malware activity detection has to address several
concerns such as generality, robustness on evasion techniques, stealthiness and timely detection
[23]. Firstly, the generality of the detection module represents the ability of covering a wide
spectrum of malware types in the training data. Secondly, the robustness refers to the ability
of recognizing different and new types of smuggling methods. Thirdly, stealthiness requires
detecting a malware attack without revealing ourselves to the attacker. Moreover, the detection
algorithm has to operate in on-line fashion with a reasonable respond time and high detection
accuracies. Since our system upgrades itself with daily collected data through a number of
honeypots, classifi cation models cover recent malware types and are getting robust on their
evasion techniques. In our method, since we analyse the trace data in passive fashion without
establishing an interaction with attacker, it is not possible to draw information about detection
process to the attacker. Finally, the investigation data are gathered as NetFlow data and it is a
trivial operation in terms of time consumption to extract traces and statistical features. Thus, the
detection system in this work is suitable for on-line operation.

In the last decade several supervised machine learning algorithms such as Support Vector
Machines (SVM), Artifi cial Neural Networks (ANN), Decision tree classifi ers, Bayesian
classifi ers and random forest algorithms have been proposed in botnet detection and C&C
server identifi cation [6], [24]. On the other hand, similar algorithms like these ones could be
customized for botnet detection with specifi c feature space as applied in [8]. In this case, such
techniques require a clustering phase for creating classifi cation models in training while they
need a weighted scoring methodology to identify the cluster of the investigation data. In what
follows next, we introduce our modelling and matching algorithms based on six statistical
features. Detailed explanation about our detection algorithm is given in [8].

1) Model Creation
In common supervised machine learning algorithms, the size and attributes of the classes in
the classifi er model should be introduced before triggering the training process. For instance,
labels represent the malware families should be included the detection model by associating
them with the feature vectors created via the traces belong that malware family in the fi rst place
before training the model in SVM algorithm, and like so many others. However, this limits
to introduce the actual and new malware families to the classifi er model while dynamically
updating that with daily incoming data from honeypots in our situation. Therefore, we use
an un-supervised machine learning approach, CLUES (CLUstEring based on local Shrinking)
algorithm [25], to create detection models for each malware families. We fi rst calculate our six
statistical features separately for each trace of the training data. Then, the trace-features are

264

clustered by using CLUES algorithm which allows dynamic sized clustering without selecting
number of clusters. A cluster which includes large number of trace-features for a particular
malware family, identifi ed through malware classifi cation unit, represents the one of the
expected values for this feature for this particular malware family. A weight is associated with
each cluster in the degree of representing that malware family. Eventually, six sets of weighted
clusters are created for each malware families. The average value of all of each cluster weights
for a family is assigned as cluster quality.

2) Detection
Each features of a trace belongs to investigation data is compared individually with each of the
clusters of each of the detection models which represent malware families. For instance, the
fi rst feature of a trace (T) is in the scope of values belong to one of the clusters in a model (M),
then, it counts a hit. Then, the weight associated with this cluster is added to that feature’s total
hit score. If another cluster for this feature in model-M raises a hit, its weight is added in the
same way. Then, if this feature’s total hit score exceeds the same feature’s total hit threshold, it
counts that this feature belongs to model-M. Same calculations are conducted for other features
of trace-T. Eventually, if majority of the features of trace-T belongs to model-M, an alert raises
about detection of infected machine by the malware family which has the classifi cation model
as model-M.

E. Distributed Processing
Hadoop Distributed File System (HDFS), is a purposefully developed system for handling large
fi les through write-once and read many data-access patterns. It has two components; name node,
which is responsible for metadata of fi le system and management and data node that is for block
storage and retrieval of data. Hadoop provides MapReduce software framework. MapReduce
programming model utilizes input and output (key, value) pairs to manage processing data on
different nodes.

BFH processes exclusive traces and does not require correlating any of two, thus, calculating
statistical feature is easy to be implemented in distributed way. Since, its modeling and matching
unit focuses on traces between IPinternal and IPexternal entities, MapReduce programming logic
is a perfect match for our system as they can be used for key values.

MapReduce methodology provides grouping and partitioning utilities to manage to group fl ows
based on multiple entities at the same time. BFH manipulates it to store the fl ows that have
same (IPinternal , IPexternal) entities, meaning once fl ow start times are sorted, it extracts traces
automatically. Main overhead for Hadoop is moving data over network, reading and writing
to disk, yet, this type of data storing, maximizes the possibility of keeping traces in one data
node, minimize the possibility of moving data over network. Performance evaluation of our
system is a complete work for another paper; thus, it is not discussed in this paper. However,
[26] provides ground truth on how Hadoop can outperform for enough large scale networks.

265

5. EXPERIMENTATION

BFH is deployed in a part of large-scale enterprise network in Turkey which has about 15000
hosts as an extension of CTMS, actively running in a production environment. NetFlow data
over this network is directly extracted from Cisco devices and stored on Hadoop clusters after
dumping them to text fi le.

For evaluation purposes, we evaluate BFH on a part of system, a network with ~8200 hosts and
in daily measurement ~6300 concurrently active, which are more vulnerable to be infected as
they provide services over internet (Table I) for three months. This network will be referred as
“experiment network”.

TABLE I: EXPERIMENT NETWORK INFORMATION

A. Training Dataset
As SysSec Report [11] details the information on malwares caught by CTMS, our system is
able to perform on a large amount of malware samples, however, to provide better estimation on
performance, as Table II shows, six different malware families are discussed over time period
of 15 days. Classifi ed Malwares, caught via 97 honeypots are used to train our system. On each
15 days, traces and models are updated via accumulated malwares till that date. Table II shows
sample and trace details of families over time.

1) Malwares
Carberp - Sophisticated, modular and persistent malware utilizing advanced obfuscation
techniques to evade detection, removal and the ability to disable antivirus.
Hesperbot - A Trojan horse that opens a back door on the compromised computer and may
steal information.
Tinba - Tiny Banking Trojan that steals information from the compromised computer.
Ramnit - A multi-component malware family which infects Windows executables as well as
HTML fi les.
Gamarue - A malware that can download fi les and steal information about compromised
computer.
Cridex - A malware that may be delivered via spammed malware. It captures online banking
credentials entered via web browsers, downloads and executes fi les, and searches and uploads
local fi les.

Total Number of Flows

NetFlow Size (GB)

Internal Host Count

Concurrently Active

Start Date

End Date

Length (Days)

322920000

41.4

~8200

~6300

01-07-2013

30-09-2013

92

266

Aforemntioned malwares are most observed malwares within Turkish Network, thus, they have
been selected in experiments.

B. Experiment
Experiment is conducted on experiment network after whitelisting for some external services
that might exhibit regular behavior and increase FP rate, such as; Microsoft, Google, Akamai,
update services, fi le-sharing services; SharePoint, DropBox etc. A BFH generated alert is
analyzed by using full traffi c capture, if symptoms are explicitly matched than it is signed as true
alert. Meanwhile both network-based and host-based IDS/IPS alerts are also used for double-
check. If there is no explicit symptom from neither full packet capture nor IDS/IPS solutions
then blacklisting services are used to determine [27-31]. In case, none of these controls provide
any infection implication, it is signed as False Positive, while this might not be completely true.

TABLE II: MALWARE FAMILY INFORMATION CAUGHT BY HONEYPOTS

1) Test Dataset
Bot Detection systems, mostly focus on off-line dataset analysis and one dataset of a large-
scale enterprise network. However, in real scenarios, actively running bot detection systems are
most likely to be analyzing weekly or monthly changing dataset. In our active system, created
models via accumulated malwares are used to detect bots on NetFlow traffi c that belongs to last
four months. Since our NetFlow data changes over time, we focus on diverse dataset, which
is NetFlow of each month. Consequently, our test dataset consists of three different NetFlow,
stored in months: July 2013, August 2013, and September 2013.

Besides, complete traffi c captures of this particular network are stored for 30 days to verify
generated alerts, but, for storage limitations, it is deleted monthly. Therefore, in our experimental
setup, detection rates and infected host are analyzed by using accumulated malware samples
and traces after each 15 days to provide better understanding for contribution of Honeypots.
More precisely, accumulated traces are used to train the system then created models are applied
on subjected month’s NetFlow data.

Start Date -
End Date

Carberp

Hesperbot

Tinba

Ramnit

Gamarue

Cridex

01 Jul -
15 Jul

3 / 8

4 / 4

20 / 24

11 / 21

25 / 24

12 / 20

01 Jul -
31 Jul

4 / 9

6 / 6

32 / 30

14 / 25

28 / 29

16 / 25

01 Jul -
15 Aug

18 / 18

9 / 10

34 / 38

18 / 29

31 / 35

21 / 33

01 Jul -
31 Aug

32 / 24

11 / 13

38 / 45

25 / 36

34 / 39

25 / 39

01 Jul -
15 Sep

42 / 31

14 / 21

46 / 52

33 / 46

38 / 43

32 / 46

01 Jul -
30 Sep

52 / 35

19 / 27

49 / 62

37 / 55

43 / 51

36 / 50

Number of Samples / Traces

M
al

w
ar

e
Fa

m
ily

267

6. DISCUSSION

Figure 2 summarizes training dataset characterization for each family over time. This graphic
illustrates, when number of samples increases, cluster quality for each family rises. This graphic
implies that BFH, wisely, manipulates honeypots to increase cluster quality.

FIGURE 2: CLUSTER QUALITY OVER TIME

Interestingly, cluster quality of Carberp malware family is less than other malware families;
main reason for this is that Carberp produces different number of traces from one sample. For
example, in the fi rst half of July, three samples are captured and eight traces are generated out
of them. Beyond that, two factors can be considered as cause for this, one is that classifi cation
unit identifi es some of the malwares as Carberp, yet, it belongs to a different family. Second,
Carberp might have different variants, exhibiting diverse network characteristics.

Figure 3 is the BFH detection results. In this graphic, detection rate of each experiment on same
dataset is highlighted with same color. First and foremost, Figure 3 reveals that BFH is able to
detect bot-infected machines in worst case 68%, in which NetFlow data is limited to two weeks
and number of samples of this particular family is less than a half of number of samples in
September. Although, there is not false negative evaluation opportunity, for a detection system,
having a few false-positives among a signifi cant number of alerts (Figure 4) is an important
indication of success, where BotFinder has detection rate from 49% to 87%, except Banbra
family.

268

FIGURE 3: DETECTION RATE (EACH COLOR INDICATES RESULT
OF EXPERIMENT ON SUBJECTED MONTH’S NETFLOW)

Secondly, detection rate for same dataset (tone-in-tone dyed) indicates, the more traces used
in training, the more accurate detection, except Hesperbot in August. This family generates
only 8 alerts with 1 FP on fi rst half of August whereas it generates 10 alerts with 2 FPs. In real,
it detects more bot-infected machines. Consequently, it highlights the vigilance of BFH on
integrating Honeypots to bot-detection system.

Furthermore, when we compare detection rates for different datasets, in Figure 3, dashed
columns of each family should be considered so as to infer that detection rates increase in
monthly by improvement of samples and traces with a few exceptions, discussed on later
section. Indeed, detection rate is expected to increase between second half of a month and
fi rst half of a month because system is trained with higher number of traces, yet datasets are
different but hosts within the network same. However, Ramnit and Gamarue families have
statistics that contradict to it. For instance; BFH has higher detection rate on end of August
than beginning of September. Since experiment network involves around 8000 hosts with
approximately 6300 concurrently active hosts, and active hosts are most likely to be different
within different months while matching unit runs.

FIGURE 4: INFECTION ALERTS ON EACH DATASET OVER TIME

269

7. CONCLUSION

This paper presented BFH, a live BotFinder-based automated bot-infected system through
Honeypots. BFH does not require any host-based information, deep-packet inspection or any
support from other network-based security deployments such as IDS/IPS. Instead, it relies
on NetFlow data, uses behavioral and training-based approach so as to detect encrypted
communications and avoid storage overhead, thus, it provides solution for large-scale. BFH
is vigilant system, since training module of BFH is fed by samples caught via sophisticated
honeypot system. BFH is deployed to a large-scale enterprise network in Turkey on Hadoop
that provides scalability. Our experiment on subjected network shows that BFH is able to
detect centralized bot-infected machines with high-accuracy; indeed, similar approach can be
improved to detect P2P bots as future work.

8. ACKNOWLEDGEMENT

This work was an extension of European Union SysSec project and it is funded by The Scientifi c
and Technological Research Council of Turkey (TUBITAK).

REFERENCES:

[1] Cooke, Evan, Farnam Jahanian, and Danny McPherson. “The zombie roundup: Understanding, detecting,
and disrupting botnets.” Proceedings of the USENIX SRUTI Workshop. Vol. 39. 2005.

[2] Freiling, Felix C., Thorsten Holz, and Georg Wicherski. Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. Springer Berlin Heidelberg, 2005.

[3] Bayer, Ulrich, et al. “Scalable, Behavior-Based Malware Clustering.” NDSS. Vol. 9. 2009.
[4] Bayer, Ulrich, Christopher Kruegel, and Engin Kirda. “Anubis: Analyzing Unknown Binaries.” (2009).
[5] Coskun, Baris, Sven Dietrich, and Nasir Memon. “Friends of an enemy: identifying local members of peer-

to-peer botnets using mutual contacts.” Proceedings of the 26th Annual Computer Security Applications
Conference. ACM, 2010.

[6] Bilge, Leyla, et al. “Disclosure: detecting botnet command and control servers through large-scale
NetFlow analysis.” Proceedings of the 28th Annual Computer Security Applications Conference. ACM,
2012.

[7] Franćois, Jérôme, Shaonan Wang, and Thomas Engel. “BotTrack: tracking botnets using NetFlow and
PageRank.” NETWORKING 2011. Springer Berlin Heidelberg, 2011. 1-14.

[8] Tegeler, Florian, et al. “BotFinder: fi nding bots in network traffi c without deep packet inspection.”
Proceedings of the 8th international conference on Emerging networking experiments and technologies.
ACM, 2012.

[9] Claise, Benoit. “Cisco systems NetFlow services export version 9.” (2004).
[10] Franklin, Jason, et al. “An inquiry into the nature and causes of the wealth of internet miscreants.” ACM

conference on Computer and communications security. 2007.
[11] (SysSec) A European Network of Excellence in Managing Threats and Vulnerabilities in the Future

Internet: Europe for the World.
[12] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: simplifi ed data processing on large clusters.”

Communications of the ACM 51.1 (2008): 107-113.
[13] Gu, Guofei, et al. “BotMiner: Clustering Analysis of Network Traffi c for Protocol-and Structure-

Independent Botnet Detection.” USENIX Security Symposium. 2008.
[14] Nagaraja, Shishir, et al. “BotGrep: Finding P2P Bots with Structured Graph Analysis.” USENIX Security

Symposium. 2010.
[15] Livadas, Carl, et al. “Usilng machine learning technliques to identify botnet traffi c.” Local Computer

Networks, Proceedings 2006 31st IEEE Conference on. IEEE, 2006.
[16] Page, Lawrence, et al. “The PageRank citation ranking: bringing order to the web.” (1999).
[17] Giroire, Frederic, et al. “Exploiting temporal persistence to detect covert botnet channels.” Recent

Advances in Intrusion Detection. Springer Berlin Heidelberg, 2009.

270

[18] Thug: The Honeynet Project [Online]. Available: http://www.honeynet.org/taxonomy/term/218
[19] Provos, Niels, and Thorsten Holz. Virtual honeypots: from botnet tracking to intrusion detection. Pearson

Education, 2007.
[20] VirusTotal [Online]. Available: https://www.virustotal.com/
[21] Jonkman, M. “Suricata IDS available for download.” Message posted to marc. info (2009).
[22] “Emerging Threats,” [Online]. Available: http://www.emergingthreats.net/.
[23] Stevanovic, Matija, and Jens Myrup Pedersen. “Machine learning for identifying botnet network traffi c.”
[24] Nogueira, António, Paulo Salvador, and Fábio Blessa. “A botnet detection system based on neural

networks.” Digital Telecommunications (ICDT), 2010 Fifth International Conference on. IEEE, 2010.
[25] Wang, Xiaogang, Weiliang Qiu, and Ruben H. Zamar. “CLUES: A non-parametric clustering method based

on local shrinking.” Computational Statistics & Data Analysis 52.1 (2007): 286-298.
[26] Lee, Youngseok, Wonchul Kang, and Hyeongu Son. “An internet traffi c analysis method with mapreduce.”

Network Operations and Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP. IEEE,
2010.

[27] [Online]. Available: http://www.mtc.sri.com/live_data/attackers/.
[28] [Online]. Available: http://isc.sans.edu/sources.html.
[29] [Online]. Available: http://www.projecthoneypot.org/list_of_ips.php.
[30] [Online]. Available: http://mirror1.malwaredomains.com/fi les/BOOT.
[31] [Online]. Available: http://www.malwaredomainlist.com/hostslist/hosts.txt.

