
241

Elastic Deep Packet
Inspection

Abstract: Deep packet inspection (DPI) systems are required to perform at or near network
line-rate speeds, matching thousands of rules against the network traffi c. The engineering
performance and price trade-offs are such that DPI is diffi cult to virtualize, either because
of very high memory consumption or the use of custom hardware; similarly, a running DPI
instance is diffi cult to ‘move’ cheaply to another part of the network. Algorithmic constraints
make it costly to update the set of rules, even with minor edits.

In this paper, we present Elastic DPI. Thanks to new algorithms and data-structures, all of these
performance and fl exibility constraints can be overcome – an important development in an
increasingly virtualized network environment. The ability to incrementally update rule sets is
also a potentially interesting use-case in next generation fi rewall appliances that rapidly update
their rule sets.

Keywords: deep packet inspection (DPI), speed/memory performance, incremental defense

1. INTRODUCTION

In this paper, we describe a new approach to deep packet inspection (DPI) – known as Elastic
DPI (EDPI). Next-generation fi rewalls (NGFW’s, which include intrusion-detection and
-prevention systems) usually consist of two main architectural components:

1. Sensors, which inspect network traffi c (standard TCP/IP traffi c, but also network
area storage traffi c, etc.), reporting back on which ‘rules’ matched. Sensors have
previously been shallow packet inspectors for performance reasons, but DPI has now
reached line-rate performance – and the deep inspection of network traffi c makes it
an obvious choice of sensor. A typical system will involve DPI instances deployed at
various points in the network, perhaps with different rule sets to gain various types
of insight into the traffi c.

Bruce W. Watson
Dept. of Information Science
Stellenbosch University
Stellenbosch, South Africa
bruce@fastar.org

IP Blox
Kelowna, Canada
bruce@ip-blox.com

2014 6th International Conference on Cyber Confl ict
P.Brangetto, M.Maybaum, J.Stinissen (Eds.)
2014 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal use within
NATO and for personal or educational use when for non-profi t or non-commercial
purposes is granted providing that copies bear this notice and a full citation on the
first page. Any other reproduction or transmission requires prior written permission
by NATO CCD COE.

242

2. Aggregators and correlators, which take input from many sensors, assembling a
broader picture of a threat. There may be multiple levels of aggregation or correlation,
each feeding upwards to a more general level that eventually signals an alarm or
threat.

Throughout this paper, we focus on DPI sensors. A good overview of the technical details or
the fi eld is given in (Varghese, 2005). Ongoing advances in this fi eld are typically covered in
conferences such as RAID1.

Present day DPI is typically static in where it is run – either because of large computational
needs or semi-custom hardware. Furthermore, while the rules recognized by a particular DPI
instance are changeable, such changes (even for a single rule add, edit, or delete) are not fast
enough to be done while processing a packet.
These aspects of current DPI (discussed in more detail in the next section) hint at the following
problematic use-cases:

1. Virtualization. Software defi ned networking, cloud computing, and in-house virtual
machine servers mean that network traffi c may be in a virtual network. The soft
(as in software) nature and dynamic topology of such networks means the traffi c is
not easily piped through semi-custom (or non-virtualizable) DPI hardware. Even
when this is possible, the scale of such networks may overwhelm the DPI instances,
making them a performance bottleneck. Ideally, DPI would be performed in COTS
hardware that is also virtualizable.

2. Fine-grained rule updates. Current DPI offerings can make rapid rule updates as
network administrators discover problems. Rule updates typically involve some
actions (e.g. ‘compiling’ the rule set) offl ine before an update; as such, the updates
are not performed in-place. The updates are usually not fast enough to be performed
while processing traffi c – i.e. there is some visible latency effect. Such fast updates
could have a role in systems where rules are being learned automatically; that
scenario would involve much more rapid rule generation/editing than done by human
network administrators.

3. Mobile DPI. For DPI implemented on COTS hardware, load-balancing can be
achieved by moving the DPI instances themselves as hardware becomes over-/
under-loaded. This is doable today, but typically involves either already having a
DPI instance at the destination, or bundling the DPI executable and compiled rules.
Ideally, this would be lightweight and fi ne-grained, where a DPI instance can be
partially moved downstream (in the network) – perhaps with the traffi c it is already
processing.

Our contribution is Elastic DPI (sensor implementation, consisting of algorithms, data-
structures and implementation techniques), with several novel characteristics:

1. Elastic resource consumption. Most DPI implementations are built upon some form
of regular expression (‘regex’) engine – all of which suffer from large memory or
time consumption. Recent advances in data-structures and algorithms for regex
processing allow us to adjust the DPI instance dynamically (both upwards and
downwards), trading memory for time and vice-versa, even while processing a single
packet.

1 Research on Attacks, Intrusions and Defenses, formerly Recent Advances in Intrusion Detection.

243

2. Dynamic rule set. A side effect of elasticity (in particular, JIT) is that the rule set can
be edited on-the-fl y, also within inspection of a single packet. Other attempts at this
have involved recompiling at least part of the rule set, whereas our solution allows
for incremental and in-place updates while processing traffi c.

3. Movable DPI engine. Part of the elastic implementation involves a domain specifi c
virtual machine (DSVM) for regular expressions2. The DSVM, along with the ability
to reduce the memory footprint under EDPI, allows for the physical relocation
(migration) of the DPI engine to other locations in the network, for robustness and
load balancing. Such moves can be fi ne-grained, in which a DPI engine which has
been partially run over a packet can then be migrated (perhaps after encryption and
signing) with the packet itself, after which the DPI run can be completed.

A. Structure of this paper
We begin in the next section with an overview of present-day DPI, focusing on the architectures,
rules for inspecting network packets, algorithms in use, implementation technologies, and
perhaps most importantly: the performance trade-offs and constraints that arise from these.

The main new results – technical aspects and advances of elastic DPI – are described in the next
section, with a focus on how it solves the problematic performance aspects of current solutions.
This paper ends with the conclusions and future work.

The reader is expected to have a passing familiarity with regular expressions and/or fi nite state
machines, or programming languages that use them, such as Awk, Perl, Python, etc. For a good
introduction, see (Friedl, 2006), which covers both the user perspective and the under-the-hood
workings of regex implementations.

2. DEEP PACKET INSPECTION TODAY

This section gives a brief overview of current DPI implementations, with a specifi c focus
on Snort – see (Cox & Gerg, 2004) and (Cisco/SourceFIRE/Snort, 2014). While numerous
other systems exist, they bear a general resemblance to Snort. Further coverage of DPI can
be found in standard references such as (Varghese, 2005), (Nucci & Papagiannaki, 2009) and
(Lockwood, 2008).

A. Architectural overview
Today, all academic and commercial/production DPI systems consist of the same basic
architectural building blocks and interactions. These closely resemble a programming tool-
chain, with a programming language, a compiler, and an execution engine. Indeed, current DPI
systems are a form of domain-specifi c language (DSL3) and tools:

• Rule sets. These specify precisely what the system is to look for in the traffi c. The
rules are usually written in some domain specifi c language in which rule experts
express interesting patterns or relationships between portions of the packet, session,
fl ow, etc.

2 Virtual machines in this context are not new – see for example Russ Cox’s work in this area (Cox R. ,
2009). A comprehensive coverage of virtual machines can be found in (Smith & Nair, 2005), while (Fick,
Kourie, & Watson, 2009) covers domain specifi c virtual machines.

3 Fowler provides a good overview of domain specifi c languages in (Fowler, 2010), while (Hudak, 1998) is
one of the fi rst papers explicitly treating DSL’s.

244

• Rule set compiler. The human-readable rules are compiled (transformed) to a set of
data-structures that are optimized for processing against the traffi c. Compilation is
usually an offl ine (batch) task, rerun for each change to the rule set. The compiler
may support some form of incremental update, in which minor changes are much
less time-consuming. Compilation is run by a network administrator, after which the
new data-structures are downloaded to the matching engine.

• Matching engine. The precompiled rules (by now often consisting of hundreds of
megabytes of data) are run against the traffi c by an ‘engine’, in many cases consisting
of specialized hardware to keep up with current network line-rates.

The following subsections consider each of these in some detail.

B. Rule sets
The rule language is a domain-specifi c language in which a rule engineer (a networking threat
expert) can express the patterns in traffi c corresponding to a threat. The best known such system
is Snort4, whose rules contain one or more clauses of the following types

• IP addresses and ports. A rule can apply to a specifi c IP address, a range of address,
or a mask of addresses. Similarly, ports may be selected.

• Flags. A rule can apply to packets with certain fl ags (un)set.
• Strings. A specifi c string of bytes may be required in a packet; additionally, an offset

range can be given, specifying where the bytes must appear.
• Regex. Regular expressions can express byte sequences that must appear in the

packet, including repetitive sequences, alternative subsequences, etc.
• Actions. Most rules include some type of action, such as logging a message, raising

an alarm, etc.

The set of such clauses making up a rule can be combined in a Boolean expression, indicating
when the rule has matched.

Several observations can be made, given that the rule language is a DSL:
• The structure of all such rule languages is not only a refl ection of the domain (as

captured during a domain modeling phase before designing the domain specifi c rule
language), but also of the underlying algorithmic and computational model used in
the matching engine. We will return to this later as a point for optimization.

• Rules can vary dramatically in granularity, meaning that some rule authors use a one-
to-one mapping between threats and rules (‘coarse’ rules), whereas others favor fi ne-
grained rules in which a threat is made up of several such smaller rules. While this
is often a question of style (as in other programming languages), coarser (‘fatter’)
rules can be so complex as to also impede optimization, and therefore performance.
The total number of rules in current systems is well over 1000, even with relatively
coarse-grained rules.

• Often, rule sets consist of several subsets, each of which are actually written for
different applications – e.g. intrusion detection rules, load-balancing rules, and
quality of service rules. In the interests of performance, these application-specifi c

4 We occasionally refer to Snort, however, all major vendor’s systems bear a close resemblance to Snort.
Snort is used as an example here because it has both open source and commercial versions. (Cisco/
SourceFIRE/Snort, 2014)

245

rules are often combined into a single large rule set for deployment in a single DPI
instance. Later, we consider the performance implications of such combinations.

C. Matching engine
(We discuss the matching engine before the rule compiler, as the engine choices determine the
compiler’s characteristics.) The matching engine is designed with three competing engineering
requirements:

1. Speed. The maximum bandwidth of the network is a given, and the engine must
typically deal with full line-rates. In addition, only limited latency is permitted.

2. Accuracy. The engine must faithfully match rules. If the engine becomes overloaded
with network traffi c, some applications allow for lossy matching, in which some
false positives or negatives are allowed.

3. Price. Balancing speed versus accuracy is also a price tradeoff. High speed and
accuracy is computationally and memory intensive and may require semi-custom
hardware.

The rule set (which is a domain specifi c language and its underlying domain model) in some
sense dictate an abstract computational model for the engine – in some sense a domain specifi c
virtual machine (Smith & Nair, 2005). In the case of Snort (which is representative of most DPI
systems), there is a combination of two things:

1. Finite state machines (FSM’s, also known as automata). These are an effi cient
representation of string patterns and also regex’s5. The fi nite state machines are run
over the packet, indicating matches of regex’s or strings. There are several types of
FSM, with the best known being6:

 a. Deterministic: fast, predictable, but potentially massive
 memory consumption, or
 b. Nondeterministic: can be much slower and less predictable, but with modest
 memory needs. Additionally, there are effi cient bit-parallel versions of these,
 which can be fast but require wide bit-vector machines or custom hardware.
2. Decision trees. Most of the other clauses in Snort rules are best compiled into

decision trees, which are then evaluated by the engine in conjunction with what is
found by the fi nite state machines.

These data-structures are loaded into the engine at startup time, and are not easily modifi ed
on-the-fl y. The engine is typically so performance constrained (barely enough clock cycles for
line-rate traffi c) that on-the-fl y optimizations and modifi cations are rarely done. This means any
data-structure optimization is necessarily pulled into the compilation phase. One optimization
that would be ideal (though not realized in current DPI implementations) is incremental
construction of the data-structures in the match engine – only fl eshing out those parts that are
actually needed while processing traffi c.

5 Regex’s are typically compiled into FSM’s using any of a number of algorithms, many of which are
found in compiler textbooks such as (Cooper & Torczon, 2012). To date, the most comprehensive (and
only taxonomic) treatment of such algorithms is (Watson, 1995). Dozens of regex compilation algorithms
were devised in the years 1958-1995, with only modest advances since then. As a result, such a taxonomy
remains a good overview of the fi eld, despite its age.

6 Most interesting alternatives require additional hardware support, such as TCAM memory, etc. Given that
one of our requirements is to push for COTS implementation, we avoid such state machines here.

246

In the engine, FSM’s and decision trees can both be implemented along the following spectrum:
pure/portable software, accelerated software (GPU7), FPGA8, ASIC9. That spectrum is
increasing in price, performance and time-to-market, but decreasing in fl exibility. With the
aforementioned performance and accuracy requirements, line-rate DPI engines often involve
FPGA’s or ASIC’s, as well as highly optimized data-structures, signifi cantly reducing fl exibility.

D. Rule compilers
With the rule language defi ned and the matching engine’s computational model selected,
rule compilation is a straightforward problem of producing the correct data-structures. As
with general purpose programming languages, the optimizer in a rule compiler is the most
time consuming component: ideally, all of the rules are compiled together and co-optimized.
Editing, adding or removing, even a single rule therefore requires an incremental recompile
step and perhaps a global re-optimization step. Compilation is also very ill suited to running
on the hardware hosting the matching engine (which is geared to high performance traffi c
stream processing) – reinforcing the notion that this is a task for the network administrator.
An overview and taxonomy of algorithms involved in regex compilation can be found in
(Watson, 1995), though several conferences cover new developments in such algorithms (e.g.
the International Conference on Implementations and Applications of Automata).

E. Performance tradeoffs and constraints
The performance tradeoffs in current systems can be summarized as:

1. Current rule sets consist of >1000 rules, and growing. Rule sets often consist of
subsets for different application areas. In practice, they are compiled together,
yielding data-structures. An alternative solution would be to separate them and
compile and deploy separate match engines – leading to at least partial duplication of
data-structures.

2. Deterministic FSM for regex’s: fast, can be implemented on standard hardware, but
can require exponential memory against the number of rules.

 a. Cheap execution unit (can be standard CPU) for the engine.
 b. Potentially exponential memory costs.
 c. Can require exponential running time and memory for compilation, giving
 very slow update time when rules are edited.
3. Nondeterministic FSM for regex’s: fast, but only when implemented with bit-

parallelism on wide bit-vector custom hardware; memory requirements linear in the
size of the rule set.

 a. Expensive execution unit consisting of custom hardware.
 b. Cheap memory for linear-sized FSM.
 c. Compilation is usually quadratic in the rule set size – still too slow for
 incremental updates after rule edits.
4. With both types of FSM, compilation is a network administrator task, and the

resulting data-structures are relatively static once moved to the match engine. As
such, all rules in the set are present (in compiled form), even if they are not used,

7 Graphics Processing Unit – e.g. from NVIDIA. Numerous papers have been written on network processing
acceleration using GPU’s.

8 Field Programmable Gate Array – a ‘soft’ silicon chip which is ‘programmed’, e.g. from Xylinx or Altera.
Network processing acceleration using FPGA’s is covered in (Lockwood, 2008).

9 Application-Specifi c Integrated Circuit – essentially a custom silicon chip. ASIC solutions to DPI are
typically proprietary or secret.

247

they confl ict, or are from different rule application areas. This can be a signifi cant
system overhead, given that practical situations see only a fraction of the total rule
set in use while processing typical network traffi c. (Of course, that is alleviated when
DPI runs on a system with virtual memory and not all data-structures are in physical
memory at a time.)

5. Many rule languages use Perl-compatible regex’s (PCRE’s). Pure regex’s compile
and optimize very well for FSM’s, but PCRE’s contain numerous features (such as
backtracking, greedy operators, etc.) that impede the match engine’s implementation
and performance. As a result, rule writers shy away from regex unless absolutely
needed, preferring to use the other rule clauses – making the rules very heterogeneous
and diffi cult to optimize (Friedl, 2006).

These tradeoffs have some DPI-system-wide implications:
• DPI is not suited to a virtualized environment:
 • Deterministic FSM: the match engine uses COTS hardware, but with high
 memory consumption (incompatible with virtualization, in which the virtual
 machines are expected to not appropriate all resources).
 • Nondeterministic FSM: the match engine uses custom hardware not found
 in a virtual environment.
• For similar reasons, it is not movable, even in a virtualized environment. Either the

system is consuming large amounts of memory (making it costly to move), or using
custom hardware (impossible to move).

• In the deterministic FSM scenario (the most common one in practice), rule set edits
do not allow for incremental compilation (where only the impacted parts of the data-
structures change). The illusion of incremental compilation is given by some systems
– though this is accomplished by compiling a separate set of tables for the rules that
have changed, thereby further raising system overheads as those new FSM’s must
also be run over the packet.

3. ELASTIC DPI

Elastic DPI uses recent advances in algorithms and data-structures (for regex’s and FSM’s) to
provide solutions to the problems sketched in the last section.

A. Simplifying the rule language
As mentioned earlier, two of the performance penalties in DPI systems are the use of: elaborate
rule structures (e.g. thanks to the different clause types in Snort rules) that require decision
trees, and regex’s, specifi cally PCRE.

In EDPI, we have chosen to only use regex’s and actions in rules:
• Regex’s can be used to express IP address, port and fl ag aspects that must match. In

the match engine, the regex is run against the entire packet, including any headers
and trailers containing such information.

248

• Strings, including their offsets within the packet, are written as regex’s. Indeed, also
in Snort string clauses are actually a form of regex in a different notation, as offsets
are readily written in regex’s as well using counting quantifi ers (Friedl, 2006).

• The dialect of regex’s chosen is much purer than PCRE, leaving out the
computationally heavy backtracking and capture mechanisms10. In return, our dialect
allows for exotic extended regex operators such intersection, negation, shuffl e, cut,
etc., which gain more than enough expressive power. Those operators allow us to
directly combine what would previously have been multiple clauses and Boolean
expression in the rule, yielding a single regex for the rule. In fact, the rule compiler
merges all of the rules’ regex’s into a single large regex (of the form Expression1 |
Expression2 | …). See (Brzozowski, 1964) for more on compiling extended regular
expressions to FSM’s.

This unifi cation of rule notation, and underlying computational formalism is both elegant (rule
writers can think in one formalism) and also computational effi cient, as discussed below.

B. Speed versus memory
In this section, we detail three groups of algorithmic, implementation, and optimization
techniques that, independently, are already signifi cant advances, but together are key enablers
for Elastic DPI.

1) On-demand construction
As mentioned earlier, most current compilers from regex’s to FSM’s are batch compilers,
meaning they compile the entire regex (in our case, the composite regex consisting of all rules)
into a single massive FSM without regard to which parts of the FSM will actually be used. At
run time, usually only a fraction of the FSM is used (because not all DPI rules match over the
traffi c) – imposing an unfortunate system overhead. Ideally, we would like to only build those
parts actually in-use – a kind of hot state/path optimization. Such algorithms have been known
since the early days of regex and FSM implementation (Thompson, 1968). In DPI systems,
for performance the match engine is often running on hardware highly tuned for the matching
process, or COTS hardware fully devoted to DPI – not the environment in which to run the
compiler or perform such on-the-fl y construction. EDPI rests on a new class of algorithms
and data-structures that are fast enough for on-the-fl y construction and optimization while
simultaneously performing matching.

A regex/FSM co-representation is presented in (Watson, Frishert, & Cleophas, 2005) and
(Frishert & Watson, 2004), and we have extended that work for EDPI. The algorithm (our
continuation engine) takes two parameters: a regular expression to be matched, and an input
byte of the traffi c. It returns another regular expression, known as the continuation. Essentially,
the continuation11 encodes the ‘remainder’ of the pattern to be matched in the input, and
computing the continuation is equivalent to taking a transition in an FSM corresponding to the
regex. Continuations date to Janusz Brzozowski’s original work in this area in the late 1950’s
(Brzozowski, 1964), though the algorithm has been oddly underused in compilers and other
applications.

10 Those mechanisms are not only computationally heavy, but also nondeterministic, making them
problematic when making real-time performance promises, as are required in DPI.

11 Also known in the literature as the derivative.

249

In our continuation engine (CE), we have made two important optimizations over Brzozowski’s
original work:

1. The continuations (over all possible input bytes) of a regex share most subexpressions
with the original regex. As such, we can apply common subexpression sharing – a
well-known technique in compilers (Cooper & Torczon, 2012) – to dramatically
reduce space. In addition to this effect in continuations, many rules in a rule-set
share subexpressions (Massicotte & Labiche, 2011) – leading to further savings
under EDPI.

2. As continuations are generated (by processing traffi c), they are cached in lookup
tables and do not need to be recomputed. Whenever a continuation is needed which
has not yet been computed, the cache entry is empty and it is computed once-off
relatively cheaply.

These two techniques allow us to process the input traffi c (taking transitions in FSM terms, but
actually computing continuations in CE terms) while effectively only building those parts of
the FSM that are actually in-use.

There are two performance implications:
1. Startup costs. With an initially empty cache, every traffi c byte processed triggers

a continuation computation in the CE. This continues until a the cache consists of
the ‘hot states/path’ – a critical mass of reusable cache entries is reached. In many
DPI applications, this occurs within the fi rst megabyte of input traffi c. With suitable
traffi c profi les, such cache preloading is something that can be done offl ine, saving
startup costs.

2. Processing costs. Most traffi c bytes processed result in a cache lookup – essentially
an FSM transition, making this as fast as any other FSM-based solution, providing
the cache implementation is highly tuned. Occasionally, a cache miss occurs,
giving some overhead in building a new continuation and cache entry. With buffer
management in EDPI, the latency from a cache miss is smoothed, and this does not
cause any throughput or latency issues. In the worst case, the CE can ‘cache thrash’,
consuming as much memory as a traditional DPI system and having some startup
latency12.

These caching techniques were explored in (Thompson, 1968), but became less interesting
as available memory grew. More recently, the performance has been quantifi ed in (Ngassam,
Watson, & Kourie, 2006).

These performance characteristics make EDPI competitive with traditional DPI in practice13,
also because hot path optimization (computing only those FSM parts that are actually in-use)
reduces total memory load and improves processor cache (not to be confused with CE cache)
utilization. To contrast, EDPI can have as little as a few kilobytes in use (representing the regex
rule set and some caching) whereas traditional DPI has megabytes of memory in use at a given
time for a comparable rule set.

12 This worst-case scenario would amount to pulling some of the compilation costs of traditional DPI into the
match engine area of the system, since one of EDPI’s architectural advantages is to support compilation in
the match engine via the CE.

13 despite the overhead of the continuation engine.

250

2) Restricting memory
Like other caches in computational systems (e.g. memory and disk caches), the CE’s cache
can be fl ushed without errors, but with a computational penalty for rebuilding. The match
engine’s memory budget may be reduced during processing (that is, in a ‘hot/live’ system). The
CE will discard the cache entries, leaving the entries ‘undefi ned’ and triggering recomputing
the continuations later. In memory constrained systems, such cache fl ushing can also be done
selectively – when memory is full and a new continuation is being constructed, the least-
recently used cache entry is fl ushed. Least-recently used is tracked using the time-stamp (clock)
counter present on most modern processors.

Flushing some cache entries frees up memory used for the transitions, but additional
memory may also be freed. In particular, the representation of the additional derivatives (the
continuations) consumes memory – even with common subexpression sharing. The CE marks
the original regex (as opposed to the continuations, which are derived from the original regex),
and can discard the non-original regex’s (the continuations) when reclaiming memory, since
the continuations are easily reconstructed by the CE. This is particularly useful for reducing the
state and regex set to a kernel that can then be moved to a new compute location (perhaps with
the packet being processed), the CE then reconstructing the cache at the new location.

3) Approximate EDPI
Using cache management techniques similar to those in the previous section, EDPI also allows
for approximate DPI (also known as lossy matching) in very memory constrained systems.
That is not presented here, but may be found in (Watson, Kourie, Ketcha, Strauss, & Cleophas,
2006).

4) Stretching and jamming
Stretching and jamming are two additional optimization techniques (they are the reverse of
each other) that can move the FSM along the speed versus memory axis (de Beijer, Cleophas,
Kourie, & Watson, 2010). DPI typically processes the traffi c an 8-bit byte at a time, implying
that regex’s are also expressed as bytes, and the FSM is represented with transitions on bytes.
Stretching allows us to process 4-bit nybbles at a time – each byte of the traffi c is separated into
a high- and a low-order nybble; the high-order nybble is processed through an FSM transition,
followed by the low-order nybble. (The order of the two nybbles can be swapped for processing,
giving an endianness optimization which sometimes yields faster processing – though this has
not yet been quantifi ed.)

Splitting traffi c bytes into nybbles is done on-the-fl y – a very fast operation on modern
processors. The FSM, however, needs some preparation, with each transition on a byte being
stretched into two transitions on the corresponding pair of nybbles. The FSM must typically
also be made deterministic again: an FSM state with transitions on bytes b0 (= nybbles n0high
and n0low) and b1 (= nybbles n1high and n1low) is deterministic when b0 and b1 are different,
but in the stretched transitions we may have n0high = n1high, making the FSM nondeterministic.
Stretching doubles the number of steps required to process the traffi c, so what does stretching
gain us? The narrower alphabet (4-bit nybbles) yields much narrower transition tables: 16
columns now compared to the 256 columns for the full 8-bit byte alphabet, and this is often

251

a signifi cant space savings despite doubling the number of transitions and adding new states.
Jamming is the opposite transformation, changing the alphabet from 8-bit bytes to 16-bit
short-words. This equates to processing two adjacent traffi c bytes at a time by merging two
subsequent transitions – halving of the processing time14. This speed win is traded against the
fact the transition tables may now have 216 = 65536 columns compared to 256 – a massive
increase, despite the halving of transitions and reduced number of states. Both stretching and
jamming may be applied again, respectively yielding transitions on 2-bit half-nybbles or on
32-bit words, etc.

The optimization sweet spot for stretching and jamming is diffi cult to fi nd a priori, though
some benchmarks are presented in (de Beijer, 2004). The CE in EDPI allows us to dynamically
stretch and jam, by rebuilding the FSM in stretched or jammed form (under the hood, the FSM
is actually modifi ed in places where it has already been built), based on speed or memory
requirements at that moment. A key future optimization is for the CE to locally stretch and jam
– an optimization for only part of the regex and FSM where it may be particularly profi table.

C. Incremental rule set modifi cations
The co-representation of the regex set with the FSM, along with CE, has a critical side-effect:
the regex’s may be edited on-the-fl y. Parts of the rule regex’s (which are, in turn, parts of the
combined regex) can be added, deleted, or modifi ed. The CE observes this and discards those
parts of the continuation data-structures that are no longer valid; they are then rebuilt as needed.
This elegant solution brings incremental rule set modifi cation to EDPI, even in running (‘hot’)
systems. Of course, if the modifi ed regex is to be rerun on the packet, this requires backtracking
to the beginning of the packet – a relatively small penalty for incremental rules.

D. Location fl exibility
The ability to move a running DPI match engine to another machine is a natural side effect of
two EDPI aspects:

• EDPI can be virtualized (thanks to more virtualization-friendly memory consumption),
and the resulting virtual stack is easily migrated within existing hypervisor products.

• Even without virtualizing EDPI, the data-structures are shrinkable to a kernel – as
mentioned earlier. Without harming the matching process, the data-structures can be
shrunk to the size of the original regex set (usually measured in kilobytes), which
can then be moved along with the partially-processed packets, and restarted at a
new location. This allows for a form of data-fl ow architecture with the computation
(EDPI instance consisting of the CE) traveling with the data to more appropriate
locations (in terms of load balancing, for example).

4. CONCLUSIONS AND FUTURE WORK

In this paper, we gave an overview of the current state of deep packet inspection (DPI) systems,
with a particular focus on their engineering tradeoffs and potential performance problems in an
increasingly virtualized environment. Against that backdrop, we presented Elastic DPI as a new
approach with some key differentiators:

14 There are some nontrivial issues that we do not discuss here, for example: a packet consisting of an odd
number of bytes must be specially handled with the last byte which has nothing to jam with.

252

1. The amount of memory in use can be grown or shrunk dynamically, trading speed
against memory consumption. This is key to enabling virtualization.

2. The set of DPI rules may be edited on-the-fl y, allowing for highly dynamic systems.
3. The actual DPI engine can be suffi ciently shrunk (in service, while processing) to be

moved effi ciently to another computing resource.
4. The domain specifi c language for expressing rules can be made uniform, in terms of

extended regular expressions which capture all of the presently used clauses in other
rule languages.

These aspects are signifi cant advances in this fi eld and are made possible by recent advances in
the algorithmics of pattern matching, as well as new implementation techniques.
The primary direction for future work is to integrate and measure the Elastic DPI system in a
production environment, yielding benchmarking data. Additional foci are on parallelism in the
Elastic DPI algorithms – especially given the current trends towards multicore hardware.

Acknowlegements:
The anonymous referees provided particularly strong, useful and well thought out feedback,
which is appreciated.

BIBLIOGRAPHY:

Watson, B. W. (1995). Taxonomies and Toolkits of Regular Language Algorithms (Ph.D dissertation ed.).
Eindhoven: Eindhoven University of Technology.

Thompson, K. (1968). Regular expression search algorithm. Communications of the ACM , 11 (6), 419-422.

Brzozowski, J. (1964). Derivatives of Regular Expressions. Journal of the ACM , 11 (4), 481-494.

Varghese, G. (2005). Network Algorithmics. Morgan Kaufmann.

Watson, B. W., Frishert, M., & Cleophas, L. (2005). Combining Regular Expressions With Near-Optimal
Automata. In A. Arppe, L. Carlson, K. Linden, J. Piitulainen, M. Suominen, M. Vainio, et al., & A.
Copestake (Ed.), Inquiries Into Words, Constraints And Contexts. Festschrift for Kimmo Koskenniemi
on his 60th Birthday (Online ed., pp. 163-171). Stanford: CSLI Studies in Computational Linguistics,
Stanford University.

Cox, K., & Gerg, C. (2004). Managing Security with Snort and IDS Tools. O’Reilly.

Smith, J. E., & Nair, R. (2005). Virtual Machines. Morgan Kaufmann.

Nucci, A., & Papagiannaki, K. (2009). Design, Mesurement and Management of Large-Scale IP Networks.
Cambridge University Press.

de Beijer, N., Cleophas, L., Kourie, D., & Watson, B. W. (2010). Improving Automata Effi ciency by Stretching
and Jamming. In J. Holub, & J. Zdarek (Ed.), Prague Stringology Conference (pp. 9-24). Prague: Czech
Technical University.

Watson, B. W., Kourie, D., Ketcha, E., Strauss, T., & Cleophas, L. (2006). Effi cient Automata Constructions and
Approximate Automata. In J. Holub (Ed.), Prague Stringology Conference (pp. 100-107). Prague: Czech
Technical University.

253

Cox, R. (2009, December). Regular Expression Matching: the Virtual Machine Approach. Retrieved from
Regexp2: http://swtch.com/~rsc/regexp/regexp2.html

Cooper, K. D., & Torczon, L. (2012). Engineering a Compiler (Second ed.). Morgan Kaufmann.

Frishert, M., & Watson, B. W. (2004). Combining Regular Expressions with Near-Optimal Brzozowski
Automata. In K. Salomaa (Ed.), Conference on Implementations and Applications of Automata. Kingston:
Queen’s University Press.

Fick, D., Kourie, D. G., & Watson, B. W. (2009). A Virtual Machine Framework for Constructing Domain
Specifi c Languages. IEE Proceedings - Software, 3 (1).

Ngassam, E. K., Watson, B. W., & Kourie, D. G. (2006). Performance of Hardcoded Finite Automata. Software -
Practice & Experience, 35 (5), 525-538.

Ngassam, E. K., Watson, B. W., & Kourie, D. G. (2006). Dynamic Allocation of Finite Automata States for Fast
String Recognition. International Journal of Foundations of Computer Science, 17 (6), 1307-1323.

Massicotte, F., & Labiche, Y. (2011). An Analysis of Signature Overlaps in Intrusion Detection Systems. 41st
International Conference on Dependable Systems & Networks (pp. 109-120). Hong Kong: IEEE/IFIP.

Lockwood, J. W. (2008). Network Packet Processing in Reconfi gurable Hardware. In S. Hauck, & A. Dehon,
Reconfi gurable Computing (pp. 753-778). Morgan Kaufmann.

Friedl, J. E. (2006). Mastering Regular Expressions (Third ed.). O’Reilly.

Cisco/SourceFIRE/Snort. (2014). Snort Homepage. Retrieved March 17, 2014, from Snort: www.snort.org

Fowler, M. (2010). Domain Specifi c Languages. Addison-Wesley.

Hudak, P. (1998). Domain Specifi c Languages. In P. H. Salas, Handbook of Programming Languages: Little
Languages and Tools (Vol. 3, pp. 39-60). MacMillan.

de Beijer, N. (2004). Stretching and Jamming of Automata (M.Sc thesis ed.). Eindhoven: Eindhoven University
of Technology.

