

Tallinn 2015

Patrycjusz Zdzichowski, Michal Sadlon, Teemu Uolevi Väisänen

Alvaro Botas Munoz, Karina Filipczak

Anti-Forensic Study

2

This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does not necessarily reflect the

policy or the opinion of the Centre or of NATO. The Centre may not be held responsible for any loss or harm arising from the use of

information contained in this publication and is not responsible for the content of the external sources, including external websites

referenced in this publication.

Digital or hard copies of this publication may be produced for internal use within NATO and for personal or educational use when for non-

profit and non-commercial purpose, provided that copies bear a full citation.

www.ccdcoe.org

publications@ccdcoe.org

3

Executive Summary

The use of anti-forensic techniques in and on IT systems is common practice for advanced and persistent

actors, particularly in the contexts of targeted attacks or efforts by organised criminals to erase digital traces.

This might include tampering with log files, using wiping or ‘cleaning’ tools, deploying rootkits, using hidden

data storage areas, or even deploying traps to be activated in the course of a later investigation. Therefore it is

necessary to describe the state of the art in anti-forensic techniques in order to identify and elaborate on

potential detection or mitigation techniques for practitioners in the field.

This paper is primarily intended to be read by forensic specialists and information security professionals. It

describes in detail how modern anti-forensic tools work and how to mitigate them. We focus mainly on

Windows operating systems, but some of the tools described can be used on Linux as well.

The first and the second sections of this report detail the proposed classification, with the description of each

technique. The third section describes several anti-forensic techniques and tries to find possible mitigation

scenarios. It focuses on techniques such as timestamp manipulation, memory pollution or data hiding, which

allow attackers to remain undetected and hide their malicious activity for as long as possible. Some methods

can break disk or memory acquisition tools, and this unequivocally indicates a use of anti-forensic techniques.

In our research, we have shown how powerful anti-forensic tools can be in the hands of skilled criminals. There

are numerous resources that teach readers how to exploit or break the forensic process, but we lack guidance

in how to protect against them. Scenario analysis for this study demonstrates that live acquisition and memory

analysis are areas of common ground in which to remain one step ahead. It is particularly beneficial to use

strings, especially against memory images or volatility plugins like cmdscan or consoles.

Some malicious activities do not touch the hard drive and will only become visible in the memory. However,

memory analysis is not fully reliable without double-checking the output and the final result that is the memory

image, as several tools might tamper with the evidence before analysis. Therefore, there is a strong need for

custom imaging tools and specific procedures to avoid the situation where we are left with evidence that is of

no use to the case we are working on. There are some hints in this paper on how to prepare for such moments.

This study is based on a Request for Support to the NATO Cooperative Cyber Defence Centre of Excellence

(NATO CCD COE) dated 25 March 2014. This request was submitted through the NATO CCD COE Steering

Committee and was approved for implementation.

4

About the NATO CCD COE

The NATO Cooperative Cyber Defence Centre of Excellence (NATO CCD COE) is an international military

organisation accredited in 2008 by NATO’s North Atlantic Council as a ‘Centre of Excellence’. Located in Tallinn,

Estonia, the Centre is currently supported by the Czech Republic, Estonia, France, Germany, Hungary, Italy,

Latvia, Lithuania, the Netherlands, Poland, Slovakia, Spain, the United Kingdom and the USA as Sponsoring

Nations, and by Austria as a Contributing Participant. The Centre is neither part of NATO’s command or force

structure, nor is it funded by NATO. However, it is part of a wider framework supporting NATO Command

Arrangements.

NATO CCD COE’s mission is to enhance capability, cooperation and information-sharing between NATO, NATO

member states, and NATO’s partner countries in the area of cyber defence by virtue of research, education and

consultation. The Centre has taken a NATO-oriented interdisciplinary approach to its key activities, including

academic research on selected topics relevant to the cyber domain from the legal, policy, strategic, doctrinal

and/or technical perspectives, providing education and training, organising conferences, workshops and cyber

defence exercises, and offering consultations upon request. For more information visit http://www.ccdcoe.org.

5

Table of Contents

Executive Summary ... 3

About the NATO CCD COE ... 4

Table of Contents .. 5

 Introduction .. 6 1

 Classification of anti-forensic techniques ... 8 2

2.1 Data ... 8

2.2 Memory related anti-forensic techniques ... 9

2.3 Digital Forensic Tools ... 10

 Anti-forensic techniques ... 11 3

3.1 Timestamps manipulation ... 11

3.2 DoS attacks against forensics investigation tools .. 20

3.3 Data hiding... 25

3.4 Usbkill .. 30

3.5 Live Linux Distributions .. 31

3.6 Memory anti-forensics .. 37

3.7 Microsoft anti-forensic settings ... 59

 Conclusions ... 62 4

References .. 63

6

 Introduction 1

Traditionally, digital forensic science has been defined as:

‘the use of scientifically derived and proven methods toward the preservation, collection, validation,

identification, analysis, interpretation, documentation and presentation of digital evidence derived

from digital sources for the purpose of facilitating or furthering the reconstruction of events found to

be criminal, or helping to anticipate unauthorised actions shown to be disruptive to planned

operations’.[1]

Later, this definition evolved to a more proactive approach to not only collecting and analysing the data related

to an incident, but also to prevent further escalation. The new approach emerged as Proactive Digital Forensic

Component, defined as ‘the ability to proactively collect, trigger an event, and preserve and analyse evidence

to identify an incident as it occurs’.[2] As a result, the collection phase comes before preservation in order to

trigger preliminary analysis. At this point, if the incident is identified, analysts have more time to react, and

perpetrators have limited time to hide their tracks. The outcome of those very first steps would be a

preliminary report based on gathered information from proactively obtained evidence.

Digital forensic investigations can be divided into several sub-branches, based on the technical aspects. The

classical branch is called Computer Forensics and contains: storage media (usually done post-mortem); physical

memory forensic (very often used in preliminary analysis); and electronic devices such as Personal Digital

Assistants (PDA), radars, detectors and surveillance electronics. The second sub-branch represents Mobile

Phone and Smartphone Forensic. This component requires a different type of knowledge, equipment and

investigation approach. Some information can be read only from removed EEPROM and other types of flash

memory chips, and that leads to yet another sub-branch of Digital Forensics – Chip Forensics. Finally, lawful

interception and malware analysis can be united under the term Network Forensics. As we can see, Digital

Forensics deals with very heterogeneous objects and data.

For several years, this has been a growing field in industry and academia. Digital Forensic Science has also been

used in many trials by lawyers to describe the chain of events. As always, the perpetrators have taken

advantage of their victims to steal their data. Those activities violate privacy and are considered crimes. Despite

the fact that the field is advancing quite quickly, it is almost impossible to keep track of it. Most of the results

from ongoing investigations are off the record and not available to the public. The main reason for that is to

hide the available techniques and solutions from criminals, but it has also made the lesson-learning process

tougher, as sharing results with forensic community is becoming something that not everyone is willing, or

even allowed, to do.

In order to reconstruct the sequence of events for any criminal and unauthorised actions, recover deleted files,

or gain intelligence about a user’s computer, digital forensic investigators should follow a specifically structured

workflow called the forensic process. We can divide it into the following phases:

• Verification – focuses on detection of an incident from indicators and evaluating its type.

• Preparation – involves the arrangement of techniques, tools, required authorisation documents and

management support.

• Approach strategy – develops a procedure to maximise the collection of evidence while minimising the

impact on the environment.

• Preservation – entails the isolation, preservation and securing of the state of evidence.

• Collection – which involves recording of the physical scene and duplicating evidence using scientifically

derived and proven methods.

• Examination – focuses on identifying and locating potential evidence relating to suspected crime.

7

• Analysis – involves steps like timeline analysis, media analysis, data recovery and string search. The

main goal is to determine significance, reconstruct fragments of data, and draw preliminary

conclusions based on evidence found.

• Reporting – the most important step, involves summarising and providing an explanation of

conclusions. The details of the examination should allow others to repeat the steps.

• Returning evidence – ensuring that any physical or digital evidence is returned to its proper owner. It

also includes procedures regarding how and what criminal evidence must be removed.

All those phases can be simplified into four main steps: seizure, acquisition, analysis and reporting. We can say

that this approach enhances the science of forensics, because it provides a basis for analysing new digital

technology while at the same time giving a joint framework for law enforcement and the judicial system to

conceivably work within a court of law.

On the other side, methods have also developed to evade the forensic process, either by the perpetrator hiding

the way the attack is carried out, or to protect the privacy of the user. These techniques are called counter-

forensic or anti-forensic techniques. We can define them as ‘any attempts to compromise the availability or

usefulness of evidence to the forensic process’.[1] Thus anti-forensics is a general term for any techniques

intended to delay, complicate, subvert or inhibit forensic techniques for finding evidence. It is also a way of

conducting criminal hacking that can be summed up as: making it as hard as possible to find you and impossible

to prove that it was you. Usually, in the world of modern operating systems and the way they manage

information, data, and events, this ‘evidence’ is generally pretty easy to find, especially when the attacker does

not expect any action against him. However, for very sophisticated computer related crimes, multiple

techniques might be used to increase the complexity of the analysis of the discovered media, even if the

suspect has been identified. Therefore, one of the options for computer villains is to block the deposition or

collection of any traces by erasing or destroying them before they can be acquired as evidence. It should be

noted that these definitions do not take into account using anti-forensics methods for ensuring the privacy of

people’s personal data.

The number of papers on protecting against anti-forensic methods is greatly outnumbered by the number of

websites, forums and other resources that teach readers how to exploit the forensic process. Therefore, it

would seem that attackers are working harder to subvert the system than the scientific community is working

to strengthen forensics.

The paper is structured as follows: The next section details the proposed classification, with the description of

each technique. The third section describes several anti-forensic techniques and tries to find possible

mitigation scenarios. It focuses on techniques that allow attackers remain undetected as long as possible or

hide their activity. Some methods can break disk or memory acquisition tools, but this unequivocally indicates a

use of anti-forensic techniques. Finally, the fourth section states final conclusions.

8

 Classification of anti-forensic techniques 2

Based on the fact that the forensic process relies on the analysis of the data collected during the evidence

acquisition phase, we can categorise anti-forensics techniques that aim at the whole process or in some cases

just parts of it. From this starting point, we can predict whether the attack will corrupt the desired final result

of the investigation. In many situations, forensic investigators can still demonstrate that they were able to work

with some evidence, even without knowing the specific content of that evidence.

2.1 Data

This category involves techniques that directly affect information stored on volatile media. It includes

metadata, the location of the data, the data content used to perform the attack, and/or the stolen information

that needs to be extracted.

2.1.1 Storage

All methods centred around storage focus on making the acquisition process as difficult and time-consuming as

possible. One of the best examples is the use of custom RAID arrays. Building custom arrays makes offline disk

acquisition practically pointless, because later on investigators will not be able to reconstruct them to retrieve

relevant data.

2.1.2 Hiding

The primary goal of hiding techniques is to store sensitive data in such a way as it will not likely be found or

decrypted. This part includes methods like steganography, or in- or out-band hiding. Steganography is all about

hiding data inside data. File formats used may vary depending on the amount of information we want to

conceal. In-band hiding focuses on alternative file streams, file-system journal logs or reserved, unallocated

sectors. The general rule is that hidden data must not break the format of the specification. On the other hand,

we have out-band hiding that can use slack space beyond the end of a partition, sectors marked as bad, slack

space at the end of files or the Host Protected Area.

2.1.3 Source elimination

Sometimes prevention is the best cure. This is particularly true when it comes to anti-forensics. Rather than put

all sorts of energy into covering up a trace after it gets generated, the most practical route is one that never

produces the evidence to begin with. A good example could be the use of live Linux distributions. All activity is

done during a live Linux session run from an external device such as a USB or optical disk that leaves no trace

on the physical hard drive. Of course, this works only if it is mounted in read-only mode.

2.1.4 Fabrication

Data fabrication is a genuinely devious strategy. Its goal is to flood the forensic analyst with false positives and

bogus leads so that a victim ends up spending most of his time chasing his tail. You essentially create a huge

mess and let the forensic analyst clean it up. For example, if a forensic analyst is going to try and identify an

intruder using file checksums, then you simply alter as many files on the volume as possible. It also involves

techniques like the addition of known files, string decoration, and false audit trials.

2.1.5 Physical/logical destruction

In this method, the attacker wants to buy time by leaving as little useful evidence as possible. Data destruction

helps to limit the amount of forensic evidence generated by disposing of data securely after it is no longer

needed or by sabotaging data structures used by forensic tools. This could be as simple as wiping the memory

9

buffers used by a program, or it could repeatedly involve overwriting to turn a cluster of data on disk into a

random series of bytes. In some cases, data transformation can be used as a form of data destruction.

Physical destruction of potentially evidence-providing storage is merely physically harming the devices such

that the evidence on them may be damaged or corrupted.

2.1.6 Saturation

The best example to explain data saturation would be a compression bomb. This is compressed content which

extracts to a size much larger than expected; to put it simply, incorrect handling of highly compressed data.

This technique can result in various denial-of-service conditions, such as memory, CPU and free disk space

exhaustion.

2.1.7 Virtualisation

Although the growth of virtualisation technologies brings benefits to more efficient use of computer resources,

it also carries a consequence of using virtual machines as anti-forensic tools. Some products allow the user to

install virtualisation software on USB flash drives or other remote disk storages (FTP servers, clouds etc.) and to

run applications directly from those devices without ever ‘touching’ the physical storage of the computer. In

this case, no traces of the attacker activities that were performed using the virtual machine will be left on the

file system of the physical machine.

2.2 Memory related anti-forensic techniques

Random Access Memory (RAM) is the bridge between the CPU, storage devices, and operating system. Nearly

everything of interest that has ever happened on a modern computer has traversed the RAM. From files to

network connections to registry hives to running malware, a wealth of data is available for analysis. That is why

recently we have seen strong emphasis on research anti-forensic tools in this field.

2.2.1 Artefacts hiding

In this group, we can distinguish techniques that prevent the initial acquisition of volatile evidence from the

machine or just sensitive parts of it that the attacker wants to hide. The most popular method to break

memory acquisition is ‘One-Byte Modification’ where an additional kernel driver changes one byte of the size in

_DISPATCHER_HEADER of PsIdleProcess, pool tag in _POOL_HEADER of PsInitialSystemProcess and

MajorOperatingSystemVersion in the PE header of Windows kernel. That leads to a situation where an

acquired image is missing a tremendous amount of information required for memory analysis. Of course, this

can raise suspicions; therefore, it is more advisable to use more sophisticated methods such as the interception

of NtWriteFile() calls. An anti-forensic tool called Dementia facilitates this technique to hide processes or

communication artefacts in the memory.

2.2.2 Pollution

The other approach is to make the memory image analysis phase as unreliable as possible is by putting

additional artefacts into memory. Bogus information like fake processes, file strings or TCP connection

attributes can make the analysis phase very time-consuming and adds doubt to the evidence in legal

proceedings. One of the examples in here is the Attention-Deficit-Disorder (ADD) tool presented by Jake

Williams and Alissa Torres during ShmooCon Conference in 2014 [3].

10

2.3 Digital Forensic Tools

Digital Forensic investigators rely on one or two tools to follow their investigations. The reliance on a small

number of tools is because of user confidence, costs of required training, and the community’s standardised

tools. Tool risk types fall into three categories: denial of service attacks, failure to validate data and fragile

heuristics. In an anti-forensic domain, the primary objective is to break forensic process and to produce fake

data that will have no value in a court of law; therefore, we can distinguish two types of methods to achieve

this goal: detection and exploitation.

2.3.1 Detection

Detection covers all the techniques that react to the presence of Digital Forensic Tools (DFT) and either modify

output or block the acquisition process. One example is the detection of a host in ‘promiscuous’ mode. Since

many forensics systems capture all packets on the LAN rather than just those addressed to the host, these

systems are detected when they respond to various kinds of malformed IP packets. Another example is

countering forensic analysis with SMART. This is Self-Monitoring, Analysis and Reporting Technology that is

built into most hard drives today and has the ability to report the total number of power cycles, log the high

temperatures that the drive has reached, log the total amount of time that a hard drive has been in use, and

record other manufacturer-determined attributes. User programs read those counters and cannot be reset.

Although the SMART specification can implement a DISABLE command, experimentation indicates that the few

drives that actually implement the DISABLE command continue to keep track of the time-in-use and power

cycle count and make this information available to the next power cycle. Anti-forensic tools can read SMART

counters to detect attempts at forensic analysis and alter their behaviour accordingly. For example, an increase

in Power_On_Minutes might indicate that the computer's hard drive has been imaged.

2.3.2 Exploitation

Exploitation includes any anti-forensic techniques that successfully facilitate vulnerabilities or weaknesses of

Digital Forensic Tools (DFT). This category refers to traditional software flaws such as buffer overflow (Encase

CVE-2007-4037) or fragile heuristics, which is based on the fact that DFT frequently needs to determine the

type of file or data objects to allow for efficient processing. For example, a forensic examiner may try to save

time by omitting the contents of executable files from searches. Many tools determine file type by just

consulting the file's extension and the first few bytes of the file's contents (the ‘magic number’). Attackers who

know the heuristics that a DFT uses for identifying data can exploit them.

11

 Anti-forensic techniques 3

3.1 Timestamps manipulation

Interacting with most file systems is like walking in snow – every activity will leave footprints. Digital forensics is

the art of analysing these artefacts. Timestamps help an analyst create a timeline of events and profile hacker

behaviour. If any suspicious file is encountered, an investigator will search for other files with similar time

attributes. For various reasons, an attacker wants to make it hard for a forensic analyst to determine the

actions that he or she took. One way to do this is to change the time values of the touched files. If the

timestamps of the malware have been changed, this can make it difficult to identify a suspicious file as well as

to determine when the malware arrived on the system. An anti-forensic technique that manipulates filesystem

timestamps is called timestomping.

There are two sets of timestamps that are tracked in the MFT, $STANDARD_INFORMATION and $FILE_NAME.

Both of them track four timestamps – Modified, Access, Created and MFT entry modified (MACE or MACB

timestamps). The $STANDARD_INFORMATION timestamps are the ones normally viewed in Windows Explorer

as well as some forensic tools.

3.1.1 Testing environment.

Operating Systems:

1. Windows 7 Enterprise x64 SP1, 1 CPU, 8GB, physical machine

2. Windows Server 2008 x86 SP2, 2 CPU, 2GB, VMware Workstation 11.1 VM

Used forensic tools:

1. AccessData FTK Imager 3.2.0.0

2. ExtractUsnJrnl 1.0.0.1

3. LogFileParser 2.0.0.20

4. Mft2Csv 2.0.0.26

5. UsnJrnl2Csv 1.0.0.6

6. Sleuthkit-4.1.3

7. Volatility Framework 2.4

8. INDXParse.py

3.1.2 Timestomp

https://www.offensive-security.com/metasploit-unleashed/timestomp/

Timestomp is a filesystem timestamp manipulation tool. It is a program that alters all four NTFS file times. It

modifies only the MACE times stored in a file’s $STANDARD_INFORMATION attribute and those not in the

$FILE_NAME attribute, thus, leaving some indicator of suspicious activity. Timestomp utility syntax is:

timestomp #filename# [options]

#filename# – the name of the file you wish to modify (you may need to surround the full path in ‘ ‘)

Options:

-m #date# M, set the ‘last written’ time of the file

-a #date# A, set the ‘last accessed’ time of the file

-c #date# C, set the ‘created’ time of the file

-e #date# E, set the ‘mft entry modified’ time of the file

-z #date# set all four attributes (MACE) of the file

-v display UTC MACE values of the file

-r set the MACE timestamps recursively on a directory

12

Time/date format: ‘DayOfWeek MMDDYYYY HH:MM:SS [AM|PM]’

3.1.2.1 Results

Testing scenario:

- Create a text file on the external USB device with NTFS filesystem and change timestamps

Status of the test_timestomp.txt file before changing the timestamps:

Then run command: timestomp e:\test_timestomp.txt -z ‘Sunday 10/10/2010 10:10:00 AM’

13

From the output, $STANDARD_INFORMATION time values are changed according to the command, but

$FILE_NAME time values are unchanged.

3.1.2.2 Analysis and possible mitigation techniques

NTFS $LogFile and change journal ($UsnJrnl) files were exported after the timestomp application testing.

Output from NTFS change journal related to timestomp application activity:

FileName USN Timestamp Reason MFTReference FileAttr ibutes

test_timestomp.txt 6736 2015-08-17
13:19:54.397:2414

BASIC_INFO_CHANGE 37 archive

test_timestomp.txt 6832 2015-08-17
13:19:54.397:2414

BASIC_INFO_CHANGE+CLOSE 37 archive

From this log, an analyst does not see what kind of change was exacted on the specific file but there is evidence

of when it happened. An identifier BASIC_INFO_CHANGE means that the file attributes and/or the time stamps

were changed. The CLOSE identifier indicates that this is the final modification made to the file in this series of

operations.

Snippets from the NTFS $LogFile output :

- The first part only confirms previous changes visible also in NTFS change journal.

UpdateNonResidentValue Noop test_timestomp.txt $DATA:$J ;$UsnJrnl 37 2015-08-17
13:19:54.397:2414

BASIC_INFO_CHANGE 6736

UpdateNonResidentValue Noop test_timestomp.txt $DATA:$J ;$UsnJrnl 37 2015-08-17
13:19:54.397:2414

BASIC_INFO_CHANGE+CLOSE 6832

14

In the NTFS $LogFile, it is possible to find changed time values. As can be seen below, there is an

UpdateResidentValue operation with modified $STANDARD_INFORMATION values. The names of the

timestamp that are used in the output of LogFile Parser tool are different from the commonly used MACE

(MACB) terminology. The timestamps refer to:

CTime means File Create Time;

ATime means File Modified Time;

MTime means MFT Entry modified Time;

RTime means File Last Access Time.

lf_RedoOperation lf_UndoOperat
ion

lf_FileName lf_CurrentAttribute lf_SI_CTime lf_SI_A Time lf_SI_MTime lf_SI_RTime

UpdateResidentVal
ue

UpdateResiden
tValue

test_timestom
p.txt

$STANDARD_INFORMAT
ION

2010-10-10
10:10:00.000:0
000

2010-10-10
10:10:00.000:0
000

2010-10-10
10:10:00.000:00
00

2010-10-10
10:10:00.000:0
000

It is possible to detect the timestomp tool not only from the NTFS $LogFile or change journal, but also from a

timestamp itself. One of the ways to tell if file time backdating has occurred on a Windows machine is to

examine the filename times compared to the times stored in $STANDARD_INFORMATION. Generally, attackers

do this only to programs they are trying to hide in the System32 or similar system directories. Those directories

and files would be a great place to start. An analyst should look to see if the $FILE_NAME time occurs after the

$STANDARD_INFORMATION Creation Time, as this would indicate an anomaly. Therefore, another possible

validation technique is to determine if the $STANDARD_INFORMATION MACE values are older than

$FILE_NAME MACE values.

Another tool for helping the analyst figure out that timestamps are changed by the timestomp tool is NTFS

timestamp resolution. NTFS timestamps have 100 nanosecond precision. Therefore it is also suspicious if a

timestamp has for example value 2010-10-10 10:10:00.000:0000 (as shown above in the entry from $LogFile).

It means that after manipulation with timestomp, the updated timestamp loses its resolution beyond seconds.

3.1.3 SetMace

https://github.com/jschicht/SetMace

SetMace is an advanced filesystem timestamp manipulation tool, originally inspired by timestomp. Tool is

capable of modifying the timestamps in both the $STANDARD_INFORMATION and the $FILE_NAME attributes

within the MFT. It is also possible to modify timestamps within volume shadow copy. This program modifies

timestamps by direct disk access. For this reason, it needs to acquire exclusive disk access and the utility

operates with elevated privileges from the user space, unmounts the target volume, and carries out its

modifications. But acquiring direct disk access to the volume from which Windows is booted is not possible

from user space in Windows since Windows Vista,[4] and so performing timestamps manipulating operations

with SetMace on such a volume needs a different approach; for example by booting a portable Windows OS

installation or by attaching the disk to some other Windows machine. So for Windows OS since Vista SetMace

cannot access the physical disk of any system volume, but it can access the physical disk of nonsystem volumes.

On Windows XP OS SetMace can reset timestamps on a file on any volume as XP’s security model did not

restrict access to the physical disk.[5]

There is no step that explicitly changes the $FILE_NAME timestamps and there is no function that allows a user

to easily change these values. To avoid this problem, SetMace moves the file to a directory on the same

volume. This process causes the $FILE_NAME timestamps to be updated to reflect those from the

$STANDARD_INFORMATION attribute.[6]

15

Steps which SetMace follows to alter timestamps:

1. Change the $STANDARD_INFORMATION timestamps of the file.

2. Create randomly named directory on the same directory.

3. Move the file to the newly-created directory

4. Change the $STANDARD_INFORMATION timestamps of the file

5. Move the file back to the original location

6. Change the $STANDARD_INFORMATION timestamps of the file.

7. Delete the newly-created directory.

SetMace utility syntax is similar to timestomp. There are 5 parameters:

- Parameter 1 is input/target file. It must be a full path.

- Parameter 2 is determining which timestamp to update:

o ‘-m’ = LastWriteTime

o ‘-a’ = LastAccessTime

o ‘-c’ = CreationTime

o ‘-e’ = ChangeTime (in $MFT)

o ‘-z’ = all 4

- Parameter 3 is the wanted new timestamp. Format must be strictly followed like

YYYY:MM:DD:HH:MM:SS:MSMSMS:NSNSNSNS. Timestamps are written as UTC.

- Parameter 4 determines if $STANDARD_INFORMATION or $FILE_NAME attribute or both should be

modified.

o ‘-si’ will only update timestamps in $STANDARD_INFORMATION (4 timestamps), or just

LastWriteTime, LastAccessTime and CreationTime (3 timestamps) for non-NTFS;

o ‘-fn’ will only update timestamps in $FILE_NAME;

o ‘-x’ will update timestamps in both $FILE_NAME and $STANDARD_INFORMATION

- Parameter 5 is optional

o ‘-shadow’ will activate shadow copy mode

3.1.3.1 Results

Testing scenario:

- create text file on the external USB device with NTFS filesystem (this enable physical access to volume)

and change timestamps (both $FILE_NAME and $STANDARD_INFORMATION attribute time values)

16

Status of the test_setmace.txt file before changing the timestamps:

Then run command: SetMace64.exe e:\test_setmace.txt -z ‘2010:10:10:10:10:00:768:1234’ –x

- be aware that timezone in the testing environment was UTC+3

From the output it is evident that both MFT entry attributes time values are changed.

17

3.1.4 Analysis and possible mitigation techniques

This newer method of timestamp manipulation is harder to detect. In order to do so an examiner cannot rely

on analyzing $UsnJrnl or $LogFile. Since this tool uses direct physical access there are no NTFS $LogFile or USN

journal entries that show changes.

In the NTFS $LogFile, an analyst cannot find changed time values like the timestomp application. Instead, there

is a different piece of evidence in the NTFS change log file for filesystem from where the SetMace application

was launched. SetMace needs access to the sectorio.sys file (or sectorio64.sys for 64-bit OS) that is the kernel

mode driver reading and writing to sectors on the underlying physical disk.

In the table below (output from an NTFS change log) you can see the operations on the filesystem where

setmace64.exe was used. This is also evidence of using SetMace and the same events are created with every

SetMace use.

FileName USN Timestamp Reason MFTReference FileAttr ibutes

sectorio64.sys 2061164992 2015-08-14
13:17:04.625:2289

FILE_CREATE 65716 archive

sectorio64.sys 2061165080 2015-08-14
13:17:04.625:2289

DATA_EXTEND+FILE_CREATE 65716 archive

sectorio64.sys 2061165168 2015-08-14
13:17:04.635:2290

CLOSE+DATA_EXTEND+FILE_CREATE 65716 archive

sectorio64.sys 2061165872 2015-08-14
13:17:06.037:7310

CLOSE+FILE_DELETE 65716 archive

sectorio64.sys 2061166200 2015-08-14
13:17:07.210:2326

FILE_CREATE 65716 archive

sectorio64.sys 2061166288 2015-08-14
13:17:07.210:2326

DATA_EXTEND+FILE_CREATE 65716 archive

sectorio64.sys 2061166376 2015-08-14
13:17:07.230:2327

CLOSE+DATA_EXTEND+FILE_CREATE 65716 archive

sectorio64.sys 2061166464 2015-08-14
13:17:07.280:2327

CLOSE+FILE_DELETE 65716 archive

3.1.4.1 Evidence in the memory

An analyst acquired the physical memory more than one hour after using the SetMace utility. As expected, it is

not possible to detect the SetMace process. An analyst can use the volatility plugin cmdscan to find commands

that were typed or executed.

The output from volatility cmdscan:

**
CommandProcess: conhost.exe Pid: 4884
CommandHistory: 0x38edd0 Application: cmd.exe Flags : Allocated, Reset
CommandCount: 3 LastAdded: 2 LastDisplayed: 2
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x64
Cmd #0 @ 0x38dae0: cd \
Cmd #1 @ 0x38adc0: cd tools\SetMace
Cmd #2 @ 0x3942e0: SetMace64.exe e:\test_setmace.txt -z
‘2010:10:10:10:10:00:768:1234’ -x
Cmd #15 @ 0x320158: 9
Cmd #16 @ 0x320158: 9
**

18

Another way is to use the volatility plugin consoles which do not only print the commands typed, but it collects

the entire screen buffer.

The output from the volatility consoles:

**
CommandHistory: 0x38edd0 Application: cmd.exe Flags : Allocated, Reset
CommandCount: 3 LastAdded: 2 LastDisplayed: 2
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x64
Cmd #0 at 0x38dae0: cd \
Cmd #1 at 0x38adc0: cd tools\SetMace
Cmd #2 at 0x3942e0: SetMace64.exe e:\test_file.txt -z ‘2010:10:10:10:10:00:768:1234’ -x

Screen 0x36b6d0 X:100 Y:400
Dump:
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All right s reserved.
 C:\Windows\system32>cd \
 C:\>cd tools\SetMace

C:\tools\SetMace>SetMace64.exe e:\ test_setmace.txt -z ‘2010:10:10:10:10:00:768:1234’ - x
Starting SetMace by Joakim Schicht
Version 1.0.0.16
Target filename: test_file.txt
Target fileref: 36
Target MFT record offset: 0x00000000C0009000
Parent filename: .
Parent fileref: 5
Parent MFT record offset: 0x00000000C0001400
….
….
….
Attempting write to physical disk without driver
Success dismounting e:
Success writing timestamps
File system cache cleared in RAM
Job took 3.38 seconds
**

It is possible to extract and verify the MFT entries of the files from the memory. To do that, an analyst can run

the volatility plugin mftparser and then look for a particular file. Distinctions between an MFT entry from

memory and filesystem is that timestamps in memory are changed immediately. We cannot rely on comparing

timestamps from MFT entries in memory to those on disk in an effort to detect timestomping ([5], p. 492-493).

The timestomping program has its own MFT entry, which the examiner might find in the memory.

Example of the output from the volatility mftparser plugin:

19

Another evidence of the timestomping program is the Shimcache registry entry that can also be found in

memory. The Shimcache registry key is part of the Application Compatibility Database and contains a path for

executable and the last modified timestamp from the $STANDARD_INFORMATION attribute of the MFT entry.

The Shimcache volatility plugin lists all the entries from the memory.

Example of the output from volatility shimcache plugin:

3.1.5 Key remarks

Final assumptions resulting from previous analysis:

- $STANDARD_INFORMATION time is before $FILE_NAME time.
- Nanoseconds values are all zeroes (works for timestomp tool).

- File change time should be greater than parent directory birth time (a file cannot be placed in a

directory that does not yet exist).[7]

Be aware that some inconsistencies may occur, but not often – the false positive ratio is low enough for further

examination of the results manually.

There are some basics methods/artefacts that could help to detect or reveal the use of timestamp

manipulation tool:

- Prefetch file – the timestomping application creates a .pf file after it executes, which an analyst can

use to show that it ran. Be aware that this functionality is not enabled by default on Windows Server

OS and workstation using SSD drives.

- UserAssist – this registry key stores a list of programs executed on a Windows machine, complete with

running count and the last execution time. Unfortunately, it does not work for programs launched

from the command line.

- Volume Shadow Copies – used to compare the current timestamps of the files with the timestamps

from the past, evidence of historical fragments.

Last Modified Path
------------------------------ ----
….
….
2015-08-06 11:56:20 UTC+0000 \??\C:\Af\SetMace\SetM ace.exe
2015-07-29 17:57:10 UTC+0000
??\C:\Windows\SoftwareDistribution\Download\Install \mpsyschk.exe
….

20

- Timeline analysis - might also reveal anomalies within the system.

- MFT entry and sequence number – tells if the file is outside the range that it should be.

To sum up, timestamp manipulation is a popular anti-forensic technique that can make forensic investigation

challenging and time consuming. There is no automated way that would easily reveal this kind of AF technique,

and not all tools are mentioned in this chapter. There are also some GUI tools that work on the timestomp

application principle, but the methods of detection are the same.

3.2 DoS attacks against forensics investigation tools

The investigation process and tools can be attacked via modified log, audio, picture, video, office, pdf, or email

storage files. This section describes a few anti-forensics techniques that could be used for DoS attacks against

forensics tools and presents some ideas for mitigating them.

3.2.1 Introduction

An XML bomb (or billion laughs) [9] is designed to overcome servers and users’ computers by consuming

resources of XML parsers.

A ZIP bomb (also known as a zip of death or decompression bomb), is a malicious archive file designed to crash

or render useless the program or system reading it.[20] Such bombs are often deployed to disable antivirus

(AV) software in order to create an opening for more traditional viruses, but they could be used to attack a

forensics tools and make investigations harder.

A zip bomb allows the program to work as intended, but the archive is carefully crafted so that unpacking it

(e.g., by AV scanner in order to scan for viruses) requires inordinate amounts of time, disk space and/or

memory. It is claimed in [10] that most modern AV programs can detect if a file is a zip bomb and avoid

unpacking it, but on 26th August 2015 the detection ratio of 42.zip in Virustotal.com was 22/56, and on 9th

September 2015 21/57.[11] There are public guidelines and webpages [12][13][14] for helping to create ZIP

bombs, so they can be easily used by script-kiddies.

A fork bomb [15] (or rabbit virus or wabbit) is a process that continually replicates itself to deplete available

system resources.

3.2.2 Attack scenarios

Attacks against systems using ZIP, XML and fork bombs could include but are not limited to the following:

- Adversary could create new ZIP bombs or insert or embed them inside other documents, such as .doc

or .pdf. The purpose would be to make an AV scanner to consume too much CPU, disk space and

memory, making the system unusable or forcing the user to shut down the AV scanner.

- Adversary could create XML bombs to crash the XML parser of the browser. By storing html and other

pages in systems and inserting XML bombs into them, it could be possible to make the investigation

slower.

- Adversary could craft a huge figure that has a small size but also consumes memory when opened.

- Adversary could encrypt, decode, obfuscate, and/or compress a short amount of sensitive data and

add this then to a ZIP bomb to, for example, hide information for later use.

- Adversary could encrypt, decode, obfuscate, and/or compress a short amount of sensitive data, add

this to a ZIP bomb, split the ZIP bomb into several packets, and send these packets to one or many

dropzones. The purpose would be the exfiltration of data.

- Adversary could insert ZIP bombs into emails.

21

- Adversary could create several similar type of files that look the same and store them to same

location. Some of the files would be ZIP bombs and some would not. The purpose could be to slow the

investigation.

- Adversary creates fork bombs that start running only when the live incident response investigation is

detected, consuming the resources of the computer and making the incident response harder.

In all scenarios, the adversary could use obfuscation techniques such as modifying headers of the files. It is also

possible that the adversary could combine different DoS techniques.

3.2.3 Examples

3.2.3.1 Crafted images

As described in [16] and in [17], it is possible that an adversary crafts a png figure showing certain uniform

colours with a width and height of thousands of pixels each. The information is stored in a file by using png

format’s compression feature. For example a compressed size of 19K x 19K pixels image in only about 44,024

bytes (44kB), but the file inflates to 1GB when viewed in 24-bit colour mode.

The following commands present information about example file picture-1G-19000x19000.png which was

downloaded from [16].

$ sha256sum picture-1G-19000x19000.png
50d5587d5b1d62382450959ee202862808e7a944603ccf3b8c9 006fb1e02d1a9 picture-1G-19000x19000.png
$ file picture-1G-19000x19000.png
picture-1G-19000x19000.png: PNG image data, 19000 x 19000, 1-bit colormap, non-interlaced
$ exiftool picture-1G-19000x19000.png
ExifTool Version Number : 9.69
File Name : picture-1G-19000x19000.png
Directory : .
File Size : 43 kB
File Modification Date/Time : 2015:09:09 13:20:36+ 03:00
File Access Date/Time : 2015:09:09 13:20:42+03:0 0
File Inode Change Date/Time : 2015:09:09 13:20:38+ 03:00
File Permissions : rw-rw-r--
File Type : PNG
MIME Type : image/png
Image Width : 19000
Image Height : 19000
Bit Depth : 1
Color Type : Palette
Compression : Deflate/Inflate
Filter : Adaptive
Interlace : Noninterlaced
Palette : 255 0 0
Image Size : 19000x19000
$ less picture-1G-19000x19000.png
picture-1G-19000x19000.png PNG 19000x19000 19000x19 000+0+0 8- bit PseudoClass 1c 44KB 0.000u
0:00.000
$ hexdump picture-1G-19000x19000.png
0000000 5089 474e 0a0d 0a1a 0000 0d00 4849 5244
0000010 0000 384a 0000 384a 0301 0000 4600 c2d4
0000020 0001 0000 5003 544c ff45 0000 e219 3709
...

There seem to be differences between software handling such images. When opening the file with

ImageMagick 3.12.2 or Chromium 43.0.2357.130 browser of 64-bit Ubuntu 14.10 running in Lenovo T540p with

16GB of memory, the use of CPU and RAM goes up for short time. See display.im6 in figure below for

ImageMagick. The highest values were not recorded.

22

Opening picture-1G-19000x19000.png with ImageMagick.
The image was not shown properly in Image Viewer 3.12.2 using the Mozilla Firefox 39.0 browser. Opening was

not tested with a machine that would not have had enough resources. Notice that user names are hidden in

the figure above. It is possible that such files could do harm to investigation machines by, for example, crashing

certain image viewers and at least making the investigation harder. Notice that the image size could be

basically anything, but we did not do tests with larger images.

3.2.3.2 42.zip

One infamous example is 42.zip [18](sha256sum: db6981082063dbb4bac89d27c41fbeb86d9e4a97b36661c0945b77a6b9bb0948),

which structure and sizes are presented in the Table below. The size of the compressed file is 42 kilobytes, but

after fully unpacking everything, the whole volume size is 4.5 petabytes.

Structure of 42.zip.

Files Size after full
uncompression

Notes

42.zip 4,5 PB 42.zip includes 16 files: lib0.zip -
libf.zip, each 34,902 bytes (34,9 kB)

 +-- lib 0.zip ... lib f.zip 4,5 TB Each includes 1 6 files: book 0.zip - book
f.zip, each 29,446 bytes (29,4 kB)

 +-- book 0.zip ... book f.zip 281,5 TB Each incl udes 16 files: chapter 0.zip -
chapter f.zip, each 32,150 bytes (32,1 kB)

 +-- chapter 0.zip ... chapter f.zip 17,6 TB Each includes 16 files: doc 0.zip - doc
f.zip, each 164,302 bytes (165,3 kB)

 +-- doc 0.zip ... doc f.zip 1,1 TB Each includes 16 files: page 0.zip - page
f.zip, each 4,168,266 bytes (4,2 MB)

 +-- page 0.zip ... page f.zip 68,7 GB Each includes 1 file: 0.dll which size is
4,294.967,295 bytes (4,3 GB)

 + -- 0.dll 4,294.967,295
bytes (4,3 GB)

Includes just 0xAA

It should be noted that there are different detection levels for 42.zip and .zip-files inside it at different levels.

The start of the output when using strings commands to 42.zip can be shown in the table below.

Table - Start of output of command ‘string 42.zip’

$ strings 42.zip

23

lib 3.zip
(QDz
373y
J%y?
4Jj%
NO[{0t
XsL~
kW=5
MQndO
x7k0~5
M}<.
+Ogu
_wFy
Z&-4_
@t90

8[q}v
l/vk
xr>A
>/}X
Wnyc
gx wz3N
Ou2!
f(3’
q5iD
C,SD
#pP*
Rjr[
%]1i
O'N%
DTB1E
GLI~e
=W7._7B
$:(A
S3;dQ
b?_d
zuI:&y
<_}L
{aP'I
:!3Hw

LXB ,
K0a 5
` &,
lib 1.zip
(QDz
373y
J%y?
4Jj%
NO[{0t
XsL~.
kW=5
MQndO
x7k0~5
M}<.
+Ogu
_wFy
Z&-4_
@t90
8[q}v
l/vk
xr>A
>/}X
Wnyc

gx wz3N
Ou2!
f(3’
q5iD
C,SD
#pP*
Rjr[
%]1i
O'N%
DTB1E
GLI~e
=W7._7B
$:(A
S3;dQ
b?_d
zuI:&y
<_}L
{aP'I
:!3Hw
LXB ,
K0a 5
` &,
<clip>

3.2.3.3 Billion laughs (XML bomb)

The XML-bomb is a small XML document designed to expand to a gigantic size when parsed by an

(unprotected) XML-parser.[19] The purpose of this kind of bomb is to crash the web browser by causing the

XML parser to run out of memory. It is claimed in [20] that most current browsers are able to detect such

recursive expansion and do not parse the booby-trapped XML.

3.2.3.4 Other examples

Harmless_4_ZettaByte_ZIP-bomb.zip is 5.61kB file that becomes more than 4 zetta bytes (ZB) when fully

uncompressed. At the moment there are not enough torrent seeders of the file, so it was not tested. The

structure of the torrent file is not described and could not be manually tested, but based on the information

from the torrent [21], the structure is close to the structure presented in the table below.

Table - Structure of Harmless_4_ZettaByte_ZIP-bomb.zip.

Files Size after full
uncompression

Notes

literature ? literature includes 1 libraries

+-- libraries ? Each includes 32 libraries

 +-- library 4,7 ZB Each includes 32 volumes

 +-- volume 147,6,4 EB Each includes 32 books

 +-- book 4,6 EB Each includes 32 chapters

 +-- chapter 144,1 PB Each includes 32 parts

 +-- part 4,5 PB Each includes 32 sections

 +-- section 140,7 TB Each includes 32 pages

 +-- page 4,4 TB Each includes 32 columns

 +-- column 137,4 GB Each includes 1 .dll file

 +-- .dll 4,29 GB Includes zeros

24

3.2.4 Fork bombs

Fork bombs operate by consuming CPU power, time and memory. Basic implementation of a fork bomb is an

infinite loop that launches the same process repeatedly. It is described in [36] that modern Unix systems

generally use copy-on-write when forking new processes and because of this, a fork bomb does not saturate

such a system’s memory. We tested some of the example fork bombs described in Wikipedia [15]. Investigation

machine used in tests was Kubuntu 14.04 in Virtualbox virtual machine with 1 CPU and 8GB of memory.

Content of executed Python script is presented below.

import os
while True:
 os.fork()

This code was saved as forkbomb.py. When starting the script in investigation machine with Python, the top

command showed hundreds of similar Python processes. Eventually, it became impossible to do anything with

the virtual machine. It was possible to stop the Python script with CTRL-C, even though this took several

minutes. After this, using the terminal again became possible, so it was possible to try to execute commands

from the terminal. The problem is that the result of executing any (tested) command was:

bash: fork: Cannot allocate memory

When the terminal where the Python script had been running was closed, everything seemed to come back to

normal. The result is that during the execution of a fork bomb, it might not be possible to do anything else

other than to try to stop the execution. It might not be possible, for example, to close the terminal windows in

GUI and try to stop the execution. Forcing it to stop via CTRL-C might take time. The easiest way seems to be to

shut down the investigation machine, but in the worst scenario some of already executed tasks have to be

done again and time would be lost. Tests with Microsoft Windows batch language examples from [15] in

Windows 7 worked also, and forced to restart the machine physically.

3.2.4.1 Attack scenario

Adversary replaces some of the commands with fork bombs. It would be interesting to try a scenario where live

memory or disk imaging tool uses such commands. If a fork bomb is run in the investigation machine, it could

cause a DoS attack against it, but luckily the investigator would most likely only lose time.

3.2.4.2 Mitigation techniques

As a mitigation technique, at least the publicly known examples of fork bombs should be searched from files. It

should be noted that it would protect only against the known ones and ones that haven’t been encrypted,

hidden or obfuscated into the files.

In the investigation machine, the amount of processes that can be spawned should be limited. In the most

Linux based distributions this can be done by modifying /etc/security/limits.conf file. It is possible

to limit amount of number of process for every user. To get more information about this configuration, try man

limits.conf and man pam_limits commands.

3.2.5 Conclusions

There are no problems with opening 42.zip with any Linux computer that has enough resources, not due to lack

of resources but because manual archive-opening programs do not have a recursive opening mode. The file

was not tested with Windows OS.

25

It should be noted that mitigation cannot be based on file signatures alone, because it is easy and fast to, for

example, add new .zip files inside bombs, change or modify files, or change the amount of ‘0xAA’s or zeros in

the final compressed files. It is possible to use the ‘strings’ command to get information about strings inside ZIP

bombs, and use this information in the detection of commonly used bombs, but it does not help if the ZIP

bombs are uniquely crafted. The investigator shouldn’t use outdated versions of web browsers nor any other

outdated tools during investigations. For example, modern web browsers have protection against XML bombs,

but older ones [22] might not have. Before opening compressed figures presented in [16] it is possible to check

the amount of pixels with exiftool. Images having more pixels than a set limit can be isolated before opening

them.

3.3 Data hiding

3.3.1 Hiding data within file slack space

In the NTFS file system, all files are allocated blocks of storage of a certain size regardless of the file’s actual

size. Current files are usually stored in 4096 byte clusters which are created from 512 byte sectors. For

example, a 3000 byte file might be stored in a 4096 byte cluster leaving 1096 bytes of storage unused. The left

over space is known as file slack space.[23] Unless the size of the file increases, file slack is not overwritten. And

if the file shrinks, old data still residing within the slack space could be retained.

Slacker is an application that provides the capability to insert files inside file slack space on NTFS file

systems.[24] The tool is also part of the Metasploit anti-forensic project. The result of use is that someone can

hide evidence within the slack space of another file. It is then more difficult to locate evidence. Although most

forensic tools are capable of searching slack space, the main problem is to know which files have had their slack

space used.[25] A lot of files, especially those associated with the OS and applications, are updated rarely, if

ever. Therefore the slack space of those files is a good place to hide the data.

Testing environment:

1. Windows 7 Enterprise x64 SP1, 1 CPU, 8GB, physical machine

2. Windows XP SP3, 1CPU, 1GB, Virtual machine

Used forensic tools:

1. AccessData FTK Imager 3.2.0.0

2. ExtractUsnJrnl 1.0.0.1

3. LogFileParser 2.0.0.20

4. Mft2Csv 2.0.0.26

5. UsnJrnl2Csv 1.0.0.6

6. Sleuthkit-4.1.3

Slacker application downloaded from http://www.jbbrowning.com/sandbox/security.html.

26

Tool syntax:

3.3.1.1 Results

Testing scenario:

- Create a text file with short text inside, use slacker to hide the content of the file

Slacker executed with the following syntax:

slacker –s c:\secret.txt m:\Files 1 c:\test.jpg –d -n

Explanation of example:

• -s means to store a file in slack space.

• C:\secret.txt is the file to hide.

• m:\Files holds different files used for slack storage space. In this case it is stored within non-system

partition.

• 1 is the level or depth of subdirectories in m:\Files to search for slack space.

• test.jpg is used for data storage info (understand like metadata of the hidden content).

• -d option for dump slack space selection.

27

• -n option for none data obfuscation.

From the tool output it is visible that the slack space of the Chrysanthenum.jpg file was used in this case to

store data from secret.txt file.

3.3.1.2 Analysis and possible mitigation techniques

NTFS $LogFile and change journal ($UsnJrnl) files were exported after the slacker application testing. Output

from the NTFS change journal related to slacker application activity:

FileName USN Timestamp Reason MFTReference

Chrysanthemum.jpg 2668920 2015-10-29
11:02:49.182:5210

DATA_EXTEND 2024

Chrysanthemum.jpg 2669016 2015-10-29
11:02:49.182:5210

DATA_EXTEND+DATA_TRUNCATION 2024

Chrysanthemum.jpg 2669112 2015-10-29
11:02:49.198:1210

CLOSE+DATA_EXTEND+DATA_TRUNCATION 2024

Reason explanation:

• Data_extend - data was added to the file.

• Data_truncation - the data in the file was truncated.

Most forensic tools are able to read data from file slack space and in this case, Access Data FTK Imager was

used to check data stored in output file slack.

No obfuscation methods were used, and hidden content is readable in clear text form. The same applies also

for data storage information as no password was used to obfuscate metadata.

28

The worse scenario for a forensic analyst occurs if obfuscation is used. The syntax of slacker looks a little

different:

slacker –s c:\secret.txt m:\Files 1 c:\test.jpg pas sword –x -k

Where:

• password is passphrase to encrypt the metadata file.

• -x option for random slack space selection.

• -k option for random key data obfuscation.

Slack space of the output file does not contain clear text information as visible below.

29

And also password was used to obfuscate metadata therefore also this information is not comprehensible for

investigator.

One fact that is noticeable here is the change of the STANDARD_INFORMATION attributes timestamps. They

are changed, the new value for M, A, and E timestamps is time when data was added to file slack space.

30

This change can be easily seen in timeline and if an investigator also has evidence of the tool execution of (from

prefetch, UserAssist, or other artefacts), then it can direct analysis to specific file where some data might have

been hidden.

Similar to detecting different anti-forensic technique, analysis of the memory can reveal some remnants of any

concealment method. It is possible to find proof of use command line tool with volatility plugins cmdscan or

consoles. But be aware that this evidence is volatile and usually disappear relatively fast.

In general, analysis of hidden data within the NTFS file system consists of two steps.[26] The first is to find out

whether there is hidden data. This can be done by looking for some artefacts that could confirm use of slacker

or another tool. The second step is to try to recover the hidden data. It is hard to recover them, because hidden

data is usually stored within the file system without any structure or metadata. As it is covered in the previous

part, slacker offers certain forms of the output data obfuscation as well as random slack data selection. That

makes recovery really challenging or impossible. Forensic tools do not check for hidden data in the NTFS file

system except tools that check for alternate data stream (ADS viewer or AltenateStream viewer). And to

perform analysis ‘manually’ by looking for suspicious content of slack space is time consuming.

3.3.2 Conclusion

Because of the security features in OS (mentioned also in Timestamp manipulation chapter), slacker does not

work correctly from Windows version 6 (Windows 7 and higher + newer versions of the Windows server). It

means that it is not possible to hide data within system partition and there is also an issue to recover hidden

data from the disk which stores system partition. But still can be used on non-system drives. Slacker works

perfectly for Windows XP or Windows Server 2003. Another fact that acts against this tool is that most antivirus

products recognise this program as a malicious application.

3.4 Usbkill

As described in [27] usbkill is an anti-forensic kill-switch that shuts down the computer if it notices changes on

computer’s USB ports. It is written in Python. It could prevent certain USB related attacks and acquisition.

31

It should be noted that the tool can be used for good and bad; the person running the script might not be an

adversary but an administrator trying to prevent illegal physical access to it.

3.4.1 Attack scenario

Three reasons are listed on the tool’s webpage [27]:

• To prevent use of tools that prevent screensavers or sleep mode activating. These might be used by

thieves or by the police.

• To prevent retrieving documents from the machine to a USB stick or installation of software via USB.

• To improve the security of the server that is using full disk encryption.

3.4.2 Mitigation

To detect the running process, one can investigate running Python processes. It is possible that the adversary

will not have changed the name of the script, but this is unlikely. If there are unknown Python processes

running, one could examine the script in the particular location. The script is open source, so it is possible to try

to discover source files from the storage medias, or strings in source code from files in the storage media, from

binary files, or from memory.

3.5 Live Linux Distributions

The idea of having removable media for storing operating systems is not new. Since operating systems like MS-

DOS in the very early introduction of personal computers, system files were loaded into memory mostly from

floppy disks. With the introduction of compact disks, DVDs and USB devices, those types of operating systems

became even more popular. These are Live CDs, also known as LiveDistros, which contain a fully operational

operating system image file with a boot loader program used to start a computer system. Most of them are

available by open source agreement and according to the agreement that ‘anyone can modify and redistribute

the original operating system without asking for permission of retribution from the author’.[28]

Despite the fact that Live Distributions are the preferred tools of the trade in conducting digital forensic

investigations (SIFT Workstation, DEFT, Caine Live, etc.), most were designed for security testing activities.

Great collections of those tools are distributed with Live CD images and are usually used by IT security

professionals to troubleshoot computer systems and networks. Unfortunately, malicious users are also taking

advantage of them to perform illegal activities. Perpetrators can boot a copy of Linux on a PC, use that machine

on a series of computers, turn it off, and walk away without leaving any evidence. They can also run a Live CD

on a physical victim machine to modify system files or steal information. A lot of Linux Live Distributions have

tools that allow users to dump SAM hashes without leaving any traces. The Windows operating system stores

password information on a local hard drive in a system file called System Accounts Manager, also known as a

SAM file. Since it is a system file, Windows does not allow a user to access it. Even if we copy that file to a

remote location it will be very difficult to decode it because the operating system uses a proprietary encryption

utility called a system key. Using distributions like Backtrack or Kali, an attacker can easily obtain this

information without leaving any evidence since all the operations are performed in RAM. Any other case such

as accessing those files from the local Windows OS will add information about such action into the system log

file.

In this sub-chapter, we will identify which activities done from Live Distributions leave traces on the local hard

drive, and how to detect them.

32

3.5.1 Testing environment and the scenario

For testing purposes, we will use Windows 7 Ultimate x86 SP1 operating system with 2 CPU, 2 GB of RAM

memory run under VMware Workstation 11.1. Our virtual machine will have only one 10 GB virtual hard drive

configured as an independent, persistent, single file with all allocated disk space on a local hard drive. This will

give us a configuration that looks as close as possible to the real working machine.

In the scenario, we will use as a Live CD two Linux distributions – Ubuntu 14.04.2 x86 and Puppy Linux 7.0.3

x64. The former is one of the most popular variations of the Linux operating system. The latter is meant to be

one of the fastest and stealthiest Linux operating systems distributed for free. They will be tested in three

different scenarios:

• First test – boot from Live Distribution on the virtual Windows 7 machine, navigate into two websites

www.cnn.com and www.distrowatch.com using the built in web browser (standard mode), copy

random data from the website into a newly created text document stored on Live Distribution’s

desktop.

• Second test – boot from Live Distribution on the virtual Windows 7 machine, mount Windows’ disk

drive (read only mode), navigate to a user’s desktop folder and access secret.txt file, copy the content

of the file into a newly created text document on Live Distribution’s desktop.

• Third test – boot from Live Distribution on the virtual Windows 7 machine, mount Windows’ disk drive

(read/write mode), navigate to a user’s desktop folder and change the content of the secret.txt file.

Before execution, we created the MD5 sum of the W7-flat.vmdk file which is the representation of a local

Windows 7 hard drive. For this purpose we used: WinMD5Free v1.20 made by Liang Ren.

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

3.5.1.1 Results and possible mitigation techniques.

3.5.1.1.1 First scenario

The first test reveals only one thing – whether Live Distributions leave any traces of evidence on the hard drive.

We will not mount the hard drive and we will not touch the existing operating system. We will use a computer

just to browse the internet and store information – according to the developers – in the RAM memory. For this

purpose, under the Live CD operating system we will open the default web browser, navigate to two

designated websites, copy random information from them, and store it on Live Distribution’s desktop in a text

document. After that, we will create the MD5 sum from the tested hard drive. This will give as a full picture

whether the Live CD requires the user to at some point to touch the hard drive (either allocated or unallocated

space).

Hard drive before the test:

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Hard drive after the test (Ubuntu 14.04.4):

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Hard drive after the test (Puppy Linux 7.0.3):

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

All MD5 sums are exactly the same. As we can see, there is no way to detect the use of the Live Distribution

from the hard drive perspective. If we shut down the machine after the malicious activity (under Ubuntu or

33

Puppy Linux) then we will not leave any traces in the RAM memory as well. The only possibility to restrict that

process is to set additional security rules in BIOS, especially with the new features that come with UEFI. This is

the only line of defence against unattended use of Live Distributions.

3.5.1.1.2 Second scenario.

The second test is focused on stealing information from a locally stored text document. Again we will boot up

the machine using the two Live Distributions, mount the hard drive and navigate to the user’s Windows 7

desktop folder. Then we will open secret.txt file and copy the content to a newly created text document stored

on Live Distro’s desktop. By default Ubuntu distributions mount all local hard drives using the following

parameters: rw, nosuid, nodev, allow_other, default_permissions, blksize=4096 which means it will allow

potential attackers to write in it as well. For the scenario we do not want to do that as it can leave potential

evidence on the hard drive, therefore we will use read-only parameter (e.g. sudo mount -o ro /dev/sda2

/media/windows).

Hard drive before the test:

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Hard drive after the test (Ubuntu 14.04.4):

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Hard drive after the test (Puppy Linux 7.0.3):

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Again, we can see that mounting the partition in read-only mode does not leave any traces on the hard drive,

which is understandable considering our previous scenario. An interesting part is that we created the MD5 sum

from the whole disk, and we can see that if we use Live Distributions just for browsing the files or copying them

to a remote location it will not leave any traces at all, even in unallocated space. All the action takes place in

RAM memory. As we advised before, the only solution would be enforcing a restrictive BIOS security policy to

not allow to boot up from random storage media.

3.5.1.1.3 Third scenario.

In our last test we will mount the hard drive and modify the secret.txt file stored in a user’s desktop folder. In

this case we can already assume that the MD5 sum will change but the question remains whether or not we

are able to detect any other attacker’s activity. We are modifying only a text file but this scenario can also apply

to mentioned in introduction SAM file or any other system files stored on the hard drive.

Hard drive before the test:

MD5 sum - W7-flat.vmdk: 42bf8afedc94a88bf77f990b5d8047a4

Hard drive after the test (Ubuntu 14.04.4):

MD5 sum - W7-flat.vmdk: 1714f0435fbb069e7c20c7ff518212fc

Hard drive after the test (Puppy Linux 7.0.3):

MD5 sum - W7-flat.vmdk: 763ba0f2884e3d9293ffce85589d7c8b

As we already assumed, the MD5 sum is different for each distribution. Now, in order to detect what happened

we will focus only on allocated space on the hard drive modified under the Ubuntu Linux distribution. To

examine it we will use AccessData FTK Imager 3.4.0.1.

34

The hard drive’s structure looks like:

We have two partitions. The first is 100MB and a typical Windows system partition created for booting

purposes. The other one is the main storage for all system and user files. In order to compare them with the

ones before the test we will create hashes from all the files on a specific partition and export them to a csv

document. Then we will compare csv documents to observe differences. For that purpose we used Beyond

Compare 4.0.7.

The first partition has 75 files in both before and after test hard drives and no differences whatsoever.

The second partition has 51052 files in both before and after test hard drives and there are ten differences

between them shown in the table below.

W7-flat.vmdk reference image W7-flat.vmdk – after test – Ubuntu
File name MD5 sum File name MD5 sum
\[root]\$I30 efc01c2615639a75230

29e212f6716a5
\[root]\$I30 8bff22bb225d6e3d785

d90a1518927e1
[root]\Users\$I30 ef0482bd03243d53fc6

49022f4fefe17
[root]\Users\$I30 0c063ff64a63292e5e7

83b9ee4032f74
[root]\Users\gib5on\$I30 7c97fcce12a939ece40

eb6b77d1afd21
[root]\Users\gib5on\$I30 167c8b9744547c86db3

193ecdb30a072
[root]\Users\gib5on\AppData\R
oaming\Microsoft\Windows\$I30

e96256a782e89143381
4d578a3da8bf6

[root]\Users\gib5on\AppData\R
oaming\Microsoft\Windows\$I30

84bfe0aec6bcdb1c266
0073d1d786e73

File not present! [root]\Users\gib5on\Desktop\$
I30

d95714f405a4bfc05c3
59fa82fdac45e

[root]\Users\gib5on\Desktop\s
ecret.txt

b85eef11e0f37522bf5
ce4ce45b790ca

[root]\Users\gib5on\Desktop\s
ecret.txt

ab1c3a815c3398f0a40
ecac6b27c6006

[root]\$Bitmap 1060900783691d2921e
b395a0f90d7a1

[root]\$Bitmap a0af1b7ff05888c2a19
da526d00eec3d

[root]\$MFT dfd54a71ca5376e6835
ad783e2da94f6

[root]\$MFT 7e721739d5b0daae574
f4e1e424d957b

[root]\Windows\ServiceProfile
s\LocalService\AppData\Local\
lastalive1.dat

69ed9bdca7be163777c
071e571e89fb8

[root]\Windows\ServiceProfile
s\LocalService\AppData\Local\
lastalive1.dat

c99a74c555371a433d1
21f551d6c6398

[unallocated space]\1183483 75a1e3aee1ad87785d2
dee39c3883e8b

File not present!

We can see that the main difference is between $I30 files and that they are related to the Windows NTFS Index

Attribute feature. The basic concept behind indexes is that there is a data structure that is sorted in a specific

tree. The tree is made up of two nodes working together – the $Index_Root and $Index_Allocation constructs.

$Index_Root is the root of the tree and contains information about the size of the entries and how to sort

them. If there are only a few entries, then they will be listed in this attribute. If there are more than a few, then

$Index_Root is just the index header and a second attribute, $Index_Allocation, is used to store the actual

index entries. The $I30 files contain filenames, file size, creation time, modification time, MFT change time and

access time.

Let’s see what are the differences between those files in our scenario. For parsing information from index files

we will use INDXParse.py python script from github (https://github.com/williballenthin/INDXParse). In the

tables below we will show only those parameters that have changed.

First location - \[root]\$I30

35

W7-flat.vmdk reference image W7-flat.vmdk – after test – Ubuntu
File name ACCESSED TIME File name ACCESSED TIME
autoexec.bat 2015-08-31 07:12:43.621071 autoexec.ba t 2015-09-01 13:37:48.057432
config.sys 2015-08-31 07:12:43.620800 config.sys 2015-09-01 13:37:48.057743
Program
Files

2011-04-12 01:34:51.409618 Program
Files

2015-09-01 13:37:48.096691

ProgramData 2009-07-14 04:53:55.611240 ProgramData, 2015-09-01 13:37:48.092342
PROGRA~1 2011-04-12 01:34:51.409618 PROGRA~1 2015-09-01 13:37:48.096691
PROGRA~2 2009-07-14 04:53:55.611240 PROGRA~2 2015-09-01 13:37:48.092342

Second location - \[root]\Users\$I30

W7-flat.vmdk reference image W7-flat.vmdk – after test – Ubuntu
File name ACCESSED TIME File name ACCESSED TIME
Default 2009-07-14 07:17:20.049328 Default 2015-09-01 13:37:49.447098
desktop.ini 2009-07-14 04:41:57.452887 desktop.ini 2015-09-01 13:37:49.429901
Public 2011-04-12 01:34:44.365992 Public 2015-09-01 13:37:49.455217

Third location - \[root]\Users\gib5on\$I30

W7-flat.vmdk reference image W7-flat.vmdk – after test – Ubuntu
File name ACCESSED TIME File name ACCESSED TIME
Contacts 2015-08-31 11:56:03.858677 Contacts 2015-09-01 13:37:51.139742
Desktop 2015-08-31 13:18:40.689661 Desktop 2015-09-01 13:39:05.077579
Downloads 2015-08-31 11:56:09.006687 Downloads 2015-09-01 13:37:51.188358
DOWNLO~1 2015-08-31 11:56:09.006687 DOWNLO~1 2015-09-01 13:37:51.188358
Music 2015-08-31 11:56:08.975487 Music 2015-09-01 13:37:51.194149
ntuser.dat.LOG1 2015-08-31 11:56:01.347073 ntuser.d at.LOG1 2015-09-01 13:37:51.124277
ntuser.ini 2015-08-31 11:56:01.378273 ntuser.ini 2015-09-01 13:37:51.135002
Pictures 2015-08-31 11:56:08.975487 Pictures 2015-09-01 13:37:51.195230
Videos 2015-08-31 11:56:08.975487 Videos 2015-09-01 13:37:51.196953

Fourth location - \[root]\Users\gib5on\AppData\Roaming\Microsoft\Windows\$I30

Fifth location - \[root]\Users\gib5on\Desktop\$I30

Since the file is not present in the reference image, we will list the one was created after scenario.

W7-flat.vmdk reference image W7-flat.vmdk – after test – Ubuntu
File name ACCESSED TIME File name ACCESSED TIME
Cookies 2015-08-31 11:56:09.849089 Contacts 2015-09 -01 13:37:51.173048
Network
Shortcuts

2015-08-31 11:56:01.331472 Desktop 2015-09-01 13:37 :51.171473

NETWOR~1 2015-08-31 11:56:01.331472 Downloads 2015- 09-01 13:37:51.171473
Printer
Shortcuts

2015-08-31 11:56:01.315872 DOWNLO~1 2015-09-01 13:3 7:51.170448

PRINTE~1 2015-08-31 11:56:01.315872 Music 2015-09-0 1 13:37:51.170448
Templates 2015-08-31 11:56:01.315872 ntuser.dat.LOG 1 2015-09-01 13:37:51.155094
TEMPLA~1 2015-08-31 11:56:01.315872 ntuser.ini 2015 -09-01 13:37:51.155094

FILENAME, PHYSICAL SIZE, LOGICAL SIZE, MODIFIED TIM E, ACCESSED TIME, CHANGED TIME, CREATED
TIME

desktop.ini, 288, 282, 2015-08-31 11:56:08.975487, 2015-08-31 11:56:08.975487, 2015-08-31
11:56:08.975487, 2015-08-31 11:56:08.975487

secret.txt, 64, 64, 2015-09-01 13:39:02.121397, 2015-09-01 13:39:03.150068 , 2015-09-01

13:39:02.125263, 2015-09-01 13:39:02.120916’

secret.txt~, 40, 35, 2015-08-31 13:18:57.007290, 20 15-09-01 13:37:55.497395, 2015-09-01
13:39:02.125278, 2015-08-31 13:18:30.846045

secret.txt~ (slack at 0x1a0), 40, 35, 2015-08-31 13 :18:57.007290, 2015-09-01
13:37:55.497395, 2015-09-01 13:39:02.125237, 2015-0 8-31 13:18:30.846045’

secret.txt~ (slack at 0x220), 40, 35, 2015-08-31 13 :18:57.007290, 2015-09-01
13:37:55.497395, 2015-09-01 13:39:02.125237, 2015-0 8-31 13:18:30.846045’

36

As we can see from index $I30 we can recreate almost the entire attacker’s activity around Windows partitions.

We can tell which folders were opened and have evidence of his or her presence in the timestamps. In our case

it was easier because we had the reference disk that was used to compare those partitions. In real life, you

probably will not have that knowledge but we can always use event logs and check the timeframes when the

operating system was up and running. Everything that does not fit into those timeframes should be

investigated.

Let’s also check the differences between $MFT files. For that we will use mft2csv tool from google code:

https://code.google.com/p/mft2csv/wiki/mft2csv.

Besides the changes of the timestamps mentioned before, there are two differences between a reference and

scenario hard drive.

First: in one the file name has been changed – from secret.txt to secret~.txt. This happened because in the

scenario we used LibreOffice to modify the .txt file, and as a result the previous version stayed in the same

place under a different name; the timestamps did not change.

Second: there is a new record in $MFT table from the image created after the test. It is a new file - secret.txt

with new timestamps dated around 2015-09-01 13:39:02 which pinpoints exact time when the file was

modified under Ubuntu Live Distribution.

Now, let’s take a look at the secret.txt itself. As we mentioned before, the document was modified with

LiberOffice under Ubuntu. In the result of that, the original document was renamed and new one created. The

interesting thing about the new document is that the owner name is Administrators (document placed in

/Users/gib5on/Desktop/ folder) and NTFS access control has only one group of users – Everyone (SID: S-1-1-0,

full access). If you check other documents in /Users/gib5on/ folder you will find that all of them have one

owner – gib5on and in NTFS access control there is information regarding at least three users/groups : gib5on,

Administrators and SYSTEM (SID: S-1-5-18). Out of that we can suspect that the new secret.txt was not created

under a Windows operating system.

3.5.1.2 Key remarks.

Those three tests have proven that if the attacker wants to steal information (read-only mount mode) from the

machine using any Linux live distribution there will be no evidence of that on the hard drive. We could also try

to search for the evidence in the memory but if the perpetrator is smart enough to power off the machine then

remaining hints about his/her activity will be gone as well.

The third scenario showed us a huge weapon to fight not only against timestamps modification but also

detection of suspicious activity (either from Live Distribution or unauthorised accounts). This weapon are $I30

index files. Since, they are not $STANDARD_INFORMATION timestamps but $FILE_NAME attribute timestamps,

they will be updated more often and in more arbitrary set of circumstances. Moreover, they tend to mirror

those in $STANDARD_INFORMATION therefore even if the original file no longer exists, we might still be able to

recover its name and original timestamps.

We can imagine a situation where a large number of files were moved to the Recycle Bin, even if at some point

it was emptied and most of the files were reallocated. We can still search for additional hints in the $I30 file

(bear in mind that the names will be changed according to Recycle Bin schema). Later on, just by analyzing MFT

change times of the $I30 entries, it will be possible to learn when the files were moved to the Recycle Bin and

recover a list of ‘recycled’ file types using their file extensions. The same approach can be used to malware

related incidents.

37

The only and the most known mitigation technique against Live Distributions is a specific set of rules on

BIOS/UEFI level prohibiting booting from external media.

3.6 Memory anti-forensics

Numerous anti-forensic techniques and tools can be used to interfere with evidence and CFT. However,

memory-based anti-forensic techniques are of particular interest because of their advanced manipulation

capabilities for obtaining digital evidence, overall effectiveness, and attacking computer forensic tools. These

methods are mainly performed in volatile memory using hiding and advanced data alteration techniques. For

these reasons memory-based anti-forensic techniques are considered to be unbeatable. This section aims to

present some of the current anti-forensic approaches and in particular reports on memory-based anti-forensic

tools and techniques.

3.6.1 ADD – attention deficit disorder

Source: https://code.google.com/p/attention-deficit-disorder/

The primary goal of this program is to confuse the analysis process. Most of the time analysts are focused on

the output of the tool. That’s why all one needs to do is to place additional artefacts in the memory not related

to investigating an incident and increase the noise to signal ratio. This can cause reduced trust in the forensic

software or the captured memory image itself. Additionally, more artefacts in the memory make the analysis

process more time consuming.

The ADD tool mainly focuses on three aspects:

- Adding fake filenames strings in the memory.

- Creating terminated processes with additional attributes like PID (Process ID), PPID (Parent Process ID)

and date of creation.

- Create TCP connections with artefacts in memory using attributes like local IP address, local port,

destination IP address, destination port and the state of the connection.

ADD tool – general use

3.6.1.1 Testing environment

Operating systems:

- Windows 7 Ultimate x86 SP1, 2 CPU, 2GB, VMware Workstation 11.1 VM

- Windows Server 2008 x86 SP2, 2 CPU, 2GB, VMware Workstation 11.1 VM

- Windows Server 2012 R2, 2 CPU, 4GB, VMware Workstation 11.1 VM

Memory image acquisition tools:

- AccessData FTK Imager 3.1.1.8 – portable edition

- MoonSols Windows Memory DumpIt 1.3.2.20110401

- Win32dd/Win64dd 1.3.1.20100417

Memory image analysis tool: Volatility Framework 2.4.

38

3.6.1.2 Testing scenario

- inject two fake processes into memory using the ADD tool – fake101.exe (PID: 3333, PPID: 500),

fake102.exe (PID:3444, PPID: 500)

- inject two fake filenames into memory using the ADD tool – fake101.exe, fake102.exe

- inject two fake connections from 192.168.1.66:46785 to 123.123.123.123:88 and 192.168.1.66:46786

to 123.123.123.124:88

ADD tool – testing scenario

3.6.1.3 Installation

The source code is available at code.google.com. For testing purposes, we used a compiled version of

executable located in the ‘Release’ folder (ADD_User_Console.exe). In order to get ADD tool working, it is

necessary to load a driver add.sys provided from separate zip file – add-file.zip is available on the same

website. OSRLoader (v. 3.0) was used to load a driver into an operating system. The executable and the driver

used for the test were already compiled, but it is possible to download their source code and modify it

according to one’s needs.

3.6.1.4 Volatility Framework 2.4 output

The main goal for the testing scenario was to observe whether the tool works which depends on the memory

imaging tool and how the processes and files are being planted in the memory. We tested three different

operating systems. Given that in order to run ADD tool it is necessary to load specially crafted driver (32bit

version), we were not able to run it on Windows 2012 R2. After running scenario on Windows 7 and Windows

Server 2008 we took three memory images per operating system using three different imaging tools (see the

testing environment).

pstree – list all active processes (before using ADD tool):

Name Pid PPid Thds Hnds Time
---- --- ---- ---- ---- -----
0x85e95030:wininit.exe 404 304 7 93 2015-08-17 06: 40:19 UTC+0000
. 0x85f97d28:lsm.exe 516 404 12 156 2015-08-17 06: 40:19 UTC+0000
. 0x85f63030:services.exe 500 404 21 253 2015-08-17 06:40:19 UTC+0000
.. 0x870481e0:taskhost.exe 1536 500 12 227 2015-08- 17 06:40:20 UTC+0000
.. 0x86c91b90:VSSVC.exe 2408 500 6 123 2015-08-17 0 6:40:24 UTC+0000
.. 0x85f76830:svchost.exe 780 500 22 436 2015-08-17 06:40:19 UTC+0000
... 0x85ec3318:audiodg.exe 964 780 6 133 2015-08-17 06:40:19 UTC+0000

39

.. 0x852132c0:msdtc.exe 2192 500 16 157 2015-08-17 06:40:22 UTC+0000

.. 0x86fb2d28:svchost.exe 1304 500 25 330 2015-08-1 7 06:40:20 UTC+0000

.. 0x86d07308:SearchIndexer 2528 500 14 623 2015-08 -17 06:40:27 UTC+0000

... 0x86d32520:SearchProtocol 2616 2528 7 260 2015- 08-17 06:40:27 UTC+0000

... 0x86d354b0:SearchFilterHo 2636 2528 5 86 2015-0 8-17 06:40:27 UTC+0000

.. 0x87027030:svchost.exe 1432 500 14 306 2015-08-1 7 06:40:20 UTC+0000

.. 0x86d72030:sppsvc.exe 2844 500 7 179 2015-08-17 06:40:36 UTC+0000

.. 0x85eee4e0:svchost.exe 688 500 12 314 2015-08-17 06:40:19 UTC+0000

.. 0x851eed28:dllhost.exe 2084 500 18 210 2015-08-1 7 06:40:22 UTC+0000

.. 0x870a49c8:svchost.exe 956 500 7 98 2015-08-17 0 6:40:22 UTC+0000

.. 0x85e7f3d8:svchost.exe 816 500 23 415 2015-08-17 06:40:19 UTC+0000

... 0x8709baa8:dwm.exe 1664 816 7 121 2015-08-17 0 6:40:20 UTC+0000

.. 0x86c53030:TPAutoConnSvc. 628 500 11 146 2015-08 -17 06:40:22 UTC+0000

... 0x86c8d850:TPAutoConnect. 2304 628 5 127 2015-0 8-17 06:40:23 UTC+0000

.. 0x85f0b6c0:svchost.exe 884 500 45 804 2015-08-17 06:40:19 UTC+0000

... 0x85cf36b8:taskeng.exe 3536 884 6 89 2015-08-17 06:40:51 UTC+0000

.. 0x870709a8:vmtoolsd.exe 1616 500 11 305 2015-08- 17 06:40:20 UTC+0000

.. 0x85f5e508:svchost.exe 856 500 19 604 2015-08-17 06:40:19 UTC+0000

.. 0x86f31d28:svchost.exe 1116 500 21 387 2015-08-1 7 06:40:20 UTC+0000

.. 0x85ef7510:svchost.exe 992 500 7 120 2015-08-17 06:40:20 UTC+0000

.. 0x86c53d28:dllhost.exe 1968 500 22 203 2015-08-1 7 06:40:22 UTC+0000

.. 0x85e97d28:svchost.exe 612 500 16 376 2015-08-17 06:40:19 UTC+0000

... 0x8718fa40:WmiPrvSE.exe 768 612 10 143 2015-08- 17 06:40:21 UTC+0000

... 0x8715a340:WmiPrvSE.exe 200 612 8 117 2015-08-1 7 06:40:21 UTC+0000

.. 0x86f91030:spoolsv.exe 1256 500 18 385 2015-08-1 7 06:40:20 UTC+0000

. 0x85f02540:lsass.exe 508 404 10 640 2015-08-17 0 6:40:19 UTC+0000
 0x85f79d28:csrss.exe 316 304 9 562 2015-08-17 06: 40:19 UTC+0000
 0x851496f0:System 4 0 81 501 2015-08-17 06:40:17 UTC+0000
. 0x85d37200:smss.exe 232 4 4 31 2015-08-17 06:40: 17 UTC+0000
 0x870abd28:explorer.exe 1724 1636 36 898 2015-08-1 7 06:40:20 UTC+0000
. 0x85cf59e8:DumpIt.exe 3488 1724 2 39 2015-08-17 0 6:40:50 UTC+0000
. 0x8717bc00:vmtoolsd.exe 352 1724 8 187 2015-08-17 06:40:21 UTC+0000
 0x85eab030:csrss.exe 396 388 10 254 2015-08-17 06 :40:19 UTC+0000
. 0x86dfd450:conhost.exe 3500 396 2 51 2015-08-17 0 6:40:50 UTC+0000
. 0x86c64030:conhost.exe 2316 396 1 33 2015-08-17 0 6:40:23 UTC+0000
 0x85eff030:winlogon.exe 460 388 7 128 2015-08-17 0 6:40:19 UTC+0000
 0x853e0030:GWX.exe 2812 2800 7 211 2015-08-17 06: 40:36 UTC+0000

pstree – list all active processes (after using ADD tool):

Name Pid PPid Thds Hnds Time
---- --- ---- ---- ---- -----
 0x85ec9d28:wininit.exe 396 304 3 79 2015-08-17 06: 42:50 UTC+0000
. 0x85f7c368:lsass.exe 512 396 9 571 2015-08-17 06 :42:50 UTC+0000
. 0x85e93af0:lsm.exe 520 396 11 146 2015-08-17 06: 42:50 UTC+0000
. 0x85eca658:services.exe 496 396 7 211 2015-08-17 06:42:50 UTC+0000
.. 0x86f14200:svchost.exe 1004 496 6 112 2015-08-17 06:42:51 UTC+0000
.. 0x85d303e8:svchost.exe 272 496 6 95 2015-08-17 0 6:42:53 UTC+0000
.. 0x872ed550:SearchIndexer 2680 496 11 607 2015-08 -17 06:42:58 UTC+0000
... 0x87344030:SearchFilterHo 2168 2680 5 557 2015- 08-17 06:48:49 UTC+0000
... 0x854c8030:SearchProtocol 4084 2680 7 218 2015- 08-17 06:48:49 UTC+0000
.. 0x86fdfd28:svchost.exe 1304 496 18 310 2015-08-1 7 06:42:51 UTC+0000
.. 0x85f46d28:svchost.exe 700 496 8 288 2015-08-17 06:42:50 UTC+0000
.. 0x8708f838:taskhost.exe 1584 496 9 223 2015-08-1 7 06:42:51 UTC+0000
.. 0x8737c9a0:sppsvc.exe 3124 496 4 165 2015-08-17 06:43:07 UTC+0000
.. 0x85fceab8:svchost.exe 828 496 19 404 2015-08-17 06:42:50 UTC+0000
... 0x870c5148:dwm.exe 1704 828 5 122 2015-08-17 0 6:42:51 UTC+0000
.. 0x8704ed28:vmtoolsd.exe 1472 496 8 297 2015-08-1 7 06:42:51 UTC+0000
.. 0x87023768:svchost.exe 1420 496 10 278 2015-08-1 7 06:42:51 UTC+0000
.. 0x85216588:dllhost.exe 2128 496 16 208 2015-08-1 7 06:42:53 UTC+0000
.. 0x87090820:msdtc.exe 2232 496 14 154 2015-08-17 06:42:54 UTC+0000
.. 0x872f8200:TrustedInstall 2908 496 5 120 2015-08 -17 06:45:39 UTC+0000
.. 0x85ea0a40:svchost.exe 868 496 13 545 2015-08-17 06:42:50 UTC+0000
.. 0x870e1030:svchost.exe 2412 496 14 377 2015-08-1 7 06:44:53 UTC+0000
.. 0x86fc28c8:spoolsv.exe 1276 496 13 357 2015-08-1 7 06:42:51 UTC+0000
.. 0x85eb6d28:svchost.exe 620 496 12 366 2015-08-17 06:42:50 UTC+0000
... 0x8714dd28:WmiPrvSE.exe 2032 620 5 118 2015-08- 17 06:42:52 UTC+0000
... 0x8713da60:dllhost.exe 2484 620 7 81 2015-08-17 06:48:45 UTC+0000
.. 0x8717ed28:TPAutoConnSvc 1768 496 9 142 2015-08- 17 06:42:53 UTC+0000
... 0x87236970:TPAutoConnect 2400 1768 5 126 2015-0 8-17 06:42:54 UTC+0000
.. 0x86f76758:svchost.exe 1128 496 15 389 2015-08-1 7 06:42:51 UTC+0000
.. 0x85ef33e8:svchost.exe 788 496 20 463 2015-08-17 06:42:50 UTC+0000
... 0x85f70418:audiodg.exe 968 788 6 133 2015-08-17 06:42:50 UTC+0000
.. 0x85ec1590:svchost.exe 892 496 32 1189 2015-08-1 7 06:42:50 UTC+0000

40

 0x85f62230:csrss.exe 312 304 9 452 2015-08-17 06: 42:50 UTC+0000
 0x85ee6030:csrss.exe 404 384 10 232 2015-08-17 06 :42:50 UTC+0000
. 0x872394a8:conhost.exe 2408 404 1 33 2015-08-17 0 6:42:54 UTC+0000
. 0x870b8d28:conhost.exe 3504 404 2 52 2015-08-17 0 6:43:20 UTC+0000
. 0x87313490:conhost.exe 1936 404 2 52 2015-08-17 0 6:48:46 UTC+0000
 0x85f4b030:winlogon.exe 460 384 5 126 2015-08-17 0 6:42:50 UTC+0000
 0x851496f0:System 4 0 82 521 2015-08-17 06:42:48 UTC+0000
. 0x85d35508:smss.exe 232 4 2 30 2015-08-17 06:42: 48 UTC+0000
 0x870f7a40:explorer.exe 1836 1668 33 932 2015-08-1 7 06:42:52 UTC+0000
. 0x873b5900:cmd.exe 3496 1836 1 22 2015-08-17 06: 43:20 UTC+0000
. 0x87241300:DumpIt.exe 3160 1836 2 39 2015-08-17 0 6:48:46 UTC+0000
. 0x85e73d28:vmtoolsd.exe 888 1836 7 196 2015-08-17 06:42:52 UTC+0000
 0x87276a30:GWX.exe 3088 3076 4 196 2015-08-17 06: 43:07 UTC+0000

psscan – list hidden and terminated processes (before using ADD tool)

psscan – list hidden and terminated processes (after using ADD tool)

psxview – cross reference processes with various lists (before using ADD tool):

Offset(P) Name PID pslist psscan thrdproc pspcid csrss session deskthr d
 ExitTime
0x7df7bc00 vmtoolsd.exe 352 True False True True Tr ue True True
0x7df5a340 WmiPrvSE.exe 200 True False True True Tr ue True True
0x7de709a8 vmtoolsd.exe 1616 True False True True T rue True True
0x7e307308 SearchIndexer 2528 True False True True True True True
0x7f095030 wininit.exe 404 True False True True Tr ue True True
0x7f0f7510 svchost.exe 992 True False True True Tr ue True True
0x7f07f3d8 svchost.exe 816 True False True True Tr ue True True
0x7f0c3318 audiodg.exe 964 True False True True Tr ue True True
0x7e253030 TPAutoConnSvc 628 True False True True T rue True True
0x7fc132c0 msdtc.exe 2192 True False True True Tru e True True
0x7e3fd450 conhost.exe 500 True False True True Tr ue True True
0x7e1b2d28 svchost.exe 1304 True False True True T rue True True
0x7e332520 SearchProtocol 2616 True False True True True True True
0x7de27030 svchost.exe 1432 True False True True T rue True True
0x7de9baa8 dwm.exe 1664 True False True True True True True
0x7e372030 sppsvc.exe 2844 True False True True Tr ue True True
0x7f097d28 svchost.exe 612 True False True True Tr ue True True
0x7f163030 services.exe 500 True False True True Tr ue True False
0x7f15e508 svchost.exe 856 True False True True Tr ue True True
0x7f2f36b8 taskeng.exe 3536 True False True True T rue True True
0x7f10b6c0 svchost.exe 884 True False True True Tr ue True True
0x7f102540 lsass.exe 508 True False True True True True False
0x7de481e0 taskhost.exe 1536 True False True True T rue True True
0x7fde0030 GWX.exe 2812 True False True True True True True
0x7dea49c8 svchost.exe 956 True False True True Tr ue True True
0x7e3354b0 SearchFilterHo 2636 True False True True True True True
0x7deabd28 explorer.exe 1724 True False True True T rue True True
0x7e28d850 TPAutoConnect 2304 True False True True True True True
0x7f0ff030 winlogon.exe 460 True False True True Tr ue True True
0x7ff6dd28 dllhost.exe 2084 True False True True T rue True True
0x7e264030 conhost.exe 2316 True False True True T rue True True
0x7df8fa40 WmiPrvSE.exe 768 True False True True Tr ue True True
0x7e191030 spoolsv.exe 1256 True False True True T rue True True
0x7f0ee4e0 svchost.exe 688 True False True True Tr ue True True
0x7e291b90 VSSVC.exe 2408 True False True True Tru e True True
0x7e131d28 svchost.exe 1116 True False True True T rue True True
0x7f176830 svchost.exe 780 True False True True Tr ue True True

Offset(P) Name PID PPID PDB Time created
 Time exited

Offset(P) Name PID PPID PDB Time created
 Time exited
0x000000007dcdb458 fake101.exe 3333 500 0x12345680 2015-07-23 23:36:01
 2015-07-23 23:43:11
0x000000007de4e848 fake102.exe 3444 500 0x12345680 2015-07-23 23:36:11
 2015-07-23 23:58:20

41

0x7f2f59e8 DumpIt.exe 3488 True False True True Tr ue True True
0x7e253d28 dllhost.exe 1968 True False True True T rue True True
0x7f197d28 lsm.exe 516 True False True True True T rue False
0x7f337200 smss.exe 232 True False True True False False False
0x7f179d28 csrss.exe 316 True False True True Fals e True True
0x7f0ab030 csrss.exe 396 True False True True Fals e True True
0x7ffc86f0 System 4 True False True True False Fal se False
0x7e011030 dllhost.exe 3416 False False False Fals e False False True
 2015-08-17 06:40:55 UTC+0000

psxview – cross reference processes with various lists (after using ADD tool):

Offset(P).Name PID pslist psscan thrdproc pspcid csrss session deskthr d
 ExitTime
0x7dcf8200.TrustedInstall 2908 True False True True True True False
0x7e114200.svchost.exe 1004 True False True True T rue True False
0x7fc16588.dllhost.exe 2128 True False True True T rue True False
0x7dc36970.TPAutoConnect 2400 True False True True True True True
0x7f0c1590.svchost.exe 892 True False True True Tr ue True False
0x7f0ca658.services.exe 496 True False True True Tr ue True False
0x7df7ed28.TPAutoConnSvc 1768 True False True True True True False
0x7f170418 audiodg.exe 968 True False True True Tr ue True True
0x7e1dfd28 svchost.exe 1304 True False True True T rue True True
0x7dc41300 DumpIt.exe 3160 True False True True Tr ue True True
0x7df4dd28 WmiPrvSE.exe 2032 True False True True T rue True False
0x7dd7c9a0 sppsvc.exe 3124 True False True True Tr ue True True
0x7fac8030 SearchProtocol 4084 True False True Fals e True True False
0x7f14b030 winlogon.exe 460 True False True True Tr ue True True
0x7f0c9d28 wininit.exe 396 True False True True Tr ue True True
0x7dc76a30 GWX.exe 3088 True False True True True True True
0x7dee1030 svchost.exe 2412 True False True True T rue True False
0x7dec5148 dwm.exe 1704 True False True True True True True
0x7f146d28 svchost.exe 700 True False True True Tr ue True True
0x7f1ceab8 svchost.exe 828 True False True True Tr ue True False
0x7f0a0a40 svchost.exe 868 True False True True Tr ue True True
0x7de90820 msdtc.exe 2232 True False True True Tru e True True
0x7e1c28c8 spoolsv.exe 1276 True False True True T rue True True
0x7ddb5900 cmd.exe 3496 True False True True True True True
0x7dced550 SearchIndexer 2680 True False True True True True False
0x7de8f838 taskhost.exe 1584 True False True True T rue True True
0x7def7a40 explorer.exe 1836 True False True True T rue True True
0x7f0f33e8 svchost.exe 788 True False True True Tr ue True True
0x7de4ed28 vmtoolsd.exe 1472 True False True True T rue True False
0x7e176758 svchost.exe 1128 True False True True T rue True True
0x7dc394a8 conhost.exe 2408 True False True True T rue True True
0x7df3da60 dllhost.exe 2484 True False True True T rue True False
0x7dd13490 conhost.exe 1936 True False True True T rue True True
0x7de23768 svchost.exe 1420 True False True True T rue True False
0x7f3303e8 svchost.exe 272 True False True True Tr ue True True
0x7f073d28 vmtoolsd.exe 888 True False True True Tr ue True True
0x7f093af0 lsm.exe 520 True False True True True T rue False
0x7f17c368 lsass.exe 512 True False True True True True False
0x7f0b6d28 svchost.exe 620 True False True True Tr ue True False
0x7deb8d28 conhost.exe 3504 True False True True T rue True True
0x7f335508 smss.exe 232 True False True True False False False
0x7f0e6030 csrss.exe 404 True False True True Fals e True True
0x7f162230 csrss.exe 312 True False True True Fals e True True
0x7ffc86f0 System 4 True False True True False Fal se False
0x7f168540 dllhost.exe 316 False False False False False False True
 2015-08-17 06:48:50 UTC+0000
0x7dd44030 SearchFilterHo 2168 True False True Fals e False True False
0x7dcdb458 fake101.exe 3333 False True False False False False False
 2015-07-23 23:43:11 UTC+0000
0x7de4e848 fake102.exe 3444 False True False False False False False
 2015-07-23 23:58:20 UTC+0000

netscan – scan for connections and sockets (before using ADD tool):

Offset(P) Proto Local Address Foreign Address Sta te Pid Owner

0x7df58cf8 TCPv4 0.0.0.0:445 0.0.0.0:0 LISTENING 4 System
0x7e1be6e0 TCPv4 0.0.0.0:49155 0.0.0.0:0 LISTENIN G 500 services.exe
0x7e27c9b0 TCPv4 192.168.117.135:139 0.0.0.0:0 LI STENING 4 System

42

0x7e362d48 TCPv4 0.0.0.0:49156 0.0.0.0:0 LISTENIN G 508 lsass.exe
0x7e362ea8 TCPv4 0.0.0.0:49156 0.0.0.0:0 LISTENIN G 508 lsass.exe
0x7e02f008 TCPv4 192.168.117.135:49159 207.46.194.1 4:80 CLOSED
0x7e03c008 TCPv4 192.168.117.135:49160 207.46.194.1 4:80 CLOSED
0x7e04d740 TCPv4 192.168.117.135:49162 184.86.2.152 :443 CLOSED
0x7e04d950 TCPv4 192.168.117.135:49161 184.86.2.152 :443 CLOSED
0x7e05d618 TCPv4 192.168.117.135:49168 23.37.37.163 :80 CLOSED
0x7e05e008 TCPv4 192.168.117.135:49167 108.162.232. 201:80 CLOSED
0x7e16c600 TCPv4 192.168.117.135:49164 207.46.194.2 5:443 CLOSED
0x7e2cbc30 TCPv4 192.168.117.135:49157 191.232.139. 253:443 ESTABLISHED
0x7f072f18 TCPv4 0.0.0.0:49153 0.0.0.0:0 LISTENIN G 780 svchost.exe
0x7f0855d8 TCPv4 0.0.0.0:49154 0.0.0.0:0 LISTENIN G 884 svchost.exe
0x7f08beb8 TCPv4 0.0.0.0:49155 0.0.0.0:0 LISTENI NG 500 services.exe
0x7f09f908 TCPv4 0.0.0.0:49153 0.0.0.0:0 LISTENI NG 780 svchost.exe
0x7f107348 TCPv4 0.0.0.0:49154 0.0.0.0:0 LISTENIN G 884 svchost.exe
0x7f108b78 TCPv4 0.0.0.0:135 0.0.0.0:0 LISTENING 688 svchost.exe
0x7f12f4d8 TCPv4 0.0.0.0:49152 0.0.0.0:0 LISTENIN G 404 wininit.exe
0x7f15a4a0 TCPv4 0.0.0.0:49152 0.0.0.0:0 LISTENIN G 404 wininit.exe
0x7fa49008 TCPv4 192.168.117.135:49165 8.27.13.125: 443 CLOSED

netscan – scan for connections and sockets (after using ADD tool):

Offset(P) Proto Local Address Foreign Address Stat e Pid Owner

0x7dd6d260 TCPv4 0.0.0.0:49156 0.0.0.0:0 LISTENING 512 lsass.exe
0x7dd6f8f8 TCPv4 0.0.0.0:49156 0.0.0.0:0 LISTENING 512 lsass.exe
0x7df31230 TCPv4 0.0.0.0:445 0.0.0.0:0 LISTENING 4 System
0x7dfcb378 TCPv4 0.0.0.0:49155 0.0.0.0:0 LISTENING 496 services.exe
0x7dfcb648 TCPv4 0.0.0.0:49155 0.0.0.0:0 LISTENING 496 services.exe
0x7e19d5a8 TCPv4 0.0.0.0:49154 0.0.0.0:0 LISTENING 892 svchost.exe
0x7dde6cd0 TCPv4 192.168.1.66:46786 123.123.123.124 :88 ESTABLISHED 0
0x7f0af4d0 TCPv4 0.0.0.0:49153 0.0.0.0:0 LISTENIN G 788 svchost.exe
0x7f121ea8 TCPv4 0.0.0.0:49154 0.0.0.0:0 LISTENING 892 svchost.exe
0x7f15dea0 TCPv4 192.168.117.135:139 0.0.0.0:0 LIS TENING 4 System
0x7f163ca8 TCPv4 0.0.0.0:49152 0.0.0.0:0 LISTENING 396 wininit.exe
0x7f165898 TCPv4 0.0.0.0:135 0.0.0.0:0 LISTENING 700 svchost.exe
0x7f175758 TCPv4 0.0.0.0:135 0.0.0.0:0 LISTENING 700 svchost.exe
0x7f1a6588 TCPv4 0.0.0.0:49152 0.0.0.0:0 LISTENING 396 wininit.exe
0x7f1ced98 TCPv4 0.0.0.0:49153 0.0.0.0:0 LISTENING 788 svchost.exe
0x7fae5008 TCPv4 192.168.1.66:46785 123.123.123.123 :88 ESTABLISHED 0

Although ADD tool shows output under Windows Server 2008 x86, we haven’t seen any injected processes and

files. From the developer’s website we can see that ADD was prepared mainly for Windows 7, and that is why

in its current state it will not work under any other Microsoft operating system. Giving the fact that the project

has open source code it is possible to see in the future other versions build for different operating systems.

3.6.1.5 Analysis of the results and possible mitigation techniques.

All images present same output under Volatility. Out of that, we can presume that different memory

acquisition tools are equally affected by ADD.

Results:

- psscan – shows two closed down processes. The PDB (page directory base) is the same on all two fake

processes. This is a static signature in the released build of ADD, and any attacker could change this;

although, it is likely script kiddies will not. In any case, each process should have a unique PDB. If we

want to signature the default build of ADD, this is currently our best bet. The PDB of 0x12345680 is

very unlikely to be legitimate (and very likely to belong to ADD). Also, we should check the time

stamps. They shouldn’t be before the system was restarted.

- psxview – enumerate processes using different techniques. If you attempt to hide processes, you will

have to evade detection some different ways. Looking at the output, the only way we can see that

there were those suspicious looking processes running (at least at one point in time) was by scanning

for EPROCESS structures.

- netscan – gives two suspicious connections to 123.123.123.123, and from the command output we

cannot see much difference between injected and legitemate ones. The only thing that stands out is

PID – 0. This is also the static signature in the released build of ADD, and is our best bet is to mitigate

injected communication artefacts.

Let’s focus on hidden/terminated processes and investigate them.

43

First, we will try command – dlllist – list of loaded libraries by suspicious process fake101.exe.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 dll list -p 3333

Volatility Foundation Volatility Framework 2.4
ERROR : volatility.plugins.taskmods: Cannot find PI D 3333. If its terminated or unlinked,
use psscan and then supply --offset=OFFSET

The volatility gives us an error, because with terminated or unlinked processes we have to supply the offset

instead.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 dll list --offset=0x000000007dcdb458

Volatility Foundation Volatility Framework 2.4
*** *********************
- pid: ------
Unable to read PEB for task.
There are no libraries related to that process. Thi s may indicate that the process was
injected.
Second – the handles command lists the handles for a process called fak e101.exe.
vol.py -f w7_add_after.raw --profile=Win7SP1x86 han dles --offset=0x000000007dcdb458
Volatility Foundation Volatility Framework 2.4
Offset(V) Pid Handle Access Type Detai ls
---------- ------ ---------- ---------- ----------- --------------- -------

There are no libraries related to that process. This may indicate that the process was injected.

Second – the handles command lists the handles for a process called fake101.exe.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 han dles --offset=0x000000007dcdb458

Volatility Foundation Volatility Framework 2.4
Offset(V) Pid Handle Access Type Detai ls
---------- ------ ---------- ---------- ----------- --------------- -------

There are no handles related to that process.

Next we will try to obtain processes by dumping to executable sample using plugin procdump.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 pro cdump --offset=0x000000007dcdb458 --dump-
dir=/cases/add/

Volatility Foundation Volatility Framework 2.4
Process(V) ImageBase Name Result
---------- ---------- -------------------- ------
---------- ---------- -------------------- Error: C annot acquire process AS

We can also try to dump the memory section into a file using plugin memdump.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 mem dump --offset=0x000000007dcdb458 --dump-
dir=/cases/add/

Volatility Foundation Volatility Framework 2.4
We are unable to dump suspicious processes. This al ong with no handles and related dlls may
indicate that memory might have been tampered with an anti-forensic tool.

44

Knowing that the ADD tool needs a special driver to inject artefacts into memory, let’s move on to loaded,

unloaded and unlinked drivers using modscan.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 mod scan

Offset(P) Name Base Size File
------------------ -------------------- ---------- ---------- ----
0x000000007dd14ec8 asyncmac.sys 0xa0925000 0x9000 \ SystemRoot\system32\DRIVERS\asyncmac.sys
0x000000007de02d90 mrxsmb.sys 0x97cc0000 0x23000 \S ystemRoot\system32\DRIVERS\mrxsmb.sys
0x000000007de08188 mrxsmb20.sys 0x97d1f000 0x1c000 \SystemRoot\system32\DRIVERS\mrxsmb20.sys
0x000000007deb01e8 srv.sys 0xa0869000 0x52000 \Sys temRoot\System32\DRIVERS\srv.sys
.
.
.
0x007f0fb688 DumpIt.sys 0xa0936000 0xc0 \??\C:\Wind ows\system32\Drivers\DumpIt.sys
0x000000007f105330 drmk.sys 0x9368b000 0x19000 \Sy stemRoot\system32\drivers\drmk.sys
0x000000007f2517f0 crashdmp.sys 0x936a4000 0xd000 \ SystemRoot\System32\Drivers\crashdmp.sys
.
.
.
0x000000007fa62e38 spsys.sys 0xa08bb000 0x6a00 \Sy stemRoot\system32\drivers\spsys.sys
0x000000007fa65a48 add.sys 0xa092e000 0x8000 \??\C :\AF\ADD\add.sys

Two locations seem odd – the first location DumpIt.sys indicates an imaging tool, but the second one, add.sys,

gives us some additional information about the tool that was used.

Let’s scan services using a plugin – svcscan.

vol.py -f w7_add_after.raw --profile=Win7SP1x86 svc scan

Offset: 0x7c09c0
Order: 4
Start: SERVICE_DEMAND_START
Process ID: -
Service Name: add
Display Name: add
Service Type: SERVICE_KERNEL_DRIVER
Service State: SERVICE_RUNNING
Binary Path: \Driver\add

We have a suspicious location for a driver – add.sys and a service called add. In our case, we used build version.

The attacker can, of course, change it, as the whole project is open-source. In spite of that, the ADD tool

requires a custom driver and service under Windows that can be detected.

Now let’s try to recover the command history using cmdscan.

**
CommandProcess: conhost.exe Pid: 2408
CommandHistory: 0x28c9d0 Application: TPAutoConnect .exe Flags: Allocated
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x5c
Cmd #5 @ 0x53004d: ?I
**
CommandProcess: conhost.exe Pid: 3504
CommandHistory: 0x3ba500 Application: cmd.exe Flags : Allocated, Reset
CommandCount: 13 LastAdded: 12 LastDisplayed: 12
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x60
Cmd #0 @ 0x39d2e8: cd /
Cmd #1 @ 0x3b8550: dir
Cmd #2 @ 0x39d300: add.exe
Cmd #3 @ 0x39d330: clear
Cmd #4 @ 0x39d348: clean
Cmd #5 @ 0x3b8570: crl
Cmd #6 @ 0x3b8580: cls
Cmd #7 @ 0x3ba668: add.exe /file fake101.exe
Cmd #8 @ 0x3bee90: add.exe /file fake102.exe
Cmd #9 @ 0x3beed0: add.exe /proc fake101.exe 3333 5 00 1438858636 30459296 1438858636
30459297
Cmd #10 @ 0x3bef70: add.exe /proc fake102.exe 3444 500 1538858636 30459296 1938858636
30459299

45

Cmd #11 @ 0x3be878: add.exe /tcpCon 3232235842 4678 5 2071690107 88 4
Cmd #12 @ 0x3be8e8: add.exe /tcpCon 3232235842 4678 6 2071690108 88 4
Cmd #22 @ 0xff818488: ?
Cmd #25 @ 0xff818488: ?
Cmd #36 @ 0x3800c4: ;?;?8???8
Cmd #37 @ 0x3b70e8: ;?8????
**
CommandProcess: conhost.exe Pid: 1936
CommandHistory: 0x359338 Application: DumpIt.exe Fl ags: Allocated
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0x60
Cmd #3 @ 0x340030: ???????????????????????????????? ???????????????????_
Cmd #17 @ 0x310039: ???_
Cmd #22 @ 0xff818488: ?
Cmd #25 @ 0xff818488: ?
Cmd #36 @ 0x3200c4: 5?5?2???2
Cmd #37 @ 0x355e58: 5?2????

From the output, we can see several items of interest. Program add.exe injected all fake artefacts used for our

scenario, which pretty much explains everything what has happened. Given the fact that we cannot always rely

on command line history (can be easily overwritten) let’s try to search for those artefacts in strings.

First, we have to create ascii and unicode strings files.

srch_strings -a -t d w7_add_after.raw > strings.txt
srch_strings -a -t d -el w7_add_after.raw >> string s.txt

Then, let’s browse strings.txt file for suspicious processes.

cat strings.txt |grep fake101.exe

2110633412 fake101.exe
7188502 ;add.exe /file fake101.exestring pointer = 0x870687c0string length= 22FileObj Pool
pointer = 0x873c9ee8C:\>add.exe /file fake102.exest ring pointer = 0x86fa34d0string length=
22FileObj Pool pointer = 0x87283318C:\>add.exe /pro c fake101.exe 3333 500 1438858636
30459296 1438858636 30459297PROC pool pointer = 0x8 72db430C:\>add.exe /proc fake102.exe 3444
500 1538858636 30459296 1938858636 30459299PROC poo l pointer = 0x8704e820C:\>add.exe /tcpCon
3232235842 46785 2071690107 88 4-1062731454 46785 2 071690107 88 4TcpE pointer =
0x854e5008C:\>add.exe /tcpCon 3232235842 46786 2071 690108 88 4-1062731454 46786
2071690108 88 4TcpE pointer = 0x873e6cd0C:\>
1925063120 exe /proc fake101.exe 3333
2000262690 eadd.exe /file fake101.exe
2012776954 eadd.exe /file fake101.exe
2066118248 2add.exe /file fake101.exe
2072370898 add.exe /proc fake101.exe 3333 500 14388 58636 30459296 1438858636 304592972
2072626776 C:\>add.exe /file fake101.exe
string pointer = 0x870687c0
string length= 22
FileObj Pool pointer = 0x873c9ee8
C:\>add.exe /file fake102.exe
string pointer = 0x86fa34d0
string length= 22
FileObj Pool pointer = 0x87283318
C:\>add.exe /proc fake101.exe 3333 500 1438858636 3 0459296 1438858636 30459297 PROC pool
pointer = 0x872db430
C:\>add.exe /proc fake102.exe 3444 500 1538858636 3 0459296 1938858636 30459299 PROC pool
pointer = 0x8704e820
2112260032 fake101.exe

Even if we do not have any history from the command line, it’s always advisable to check for any suspicious

strings in the memory image. This also gives us ideas on how those artefacts got into the analysing machine.

Now when we have a suspicious add.exe file, we can browse it in strings.exe and see if it yields any results.

46

cat strings.txt |grep add.exe

2000262684 add.exe
2011061428 add.exe
2012776948 add.exe
2023762532 add.exe
2107657356 add.exe
2111392020 add.exe
2113330836 add.exe
2140368052 add.exe
 1082798 *C:\add.exe
 1082824 \??\C:\add.exe
7188502 ;add.exe /file fake101.exestring pointer = 0x870687c0string length= 22FileObj Pool
pointer = 0x873c9ee8C:\>add.exe /file fake102.exest ring pointer = 0x86fa34d0string length=
22FileObj Pool pointer = 0x87283318C:\>add.exe /pro c fake101.exe 3333 500 1438858636
30459296 1438858636 30459297PROC pool pointer = 0x8 72db430C:\>add.exe /proc fake102.exe 3444
500 1538858636 30459296 1938858636 30459299PROC poo l pointer = 0x8704e820C:\>add.exe /tcpCon
3232235842 46785 2071690107 88 4-1062731454 46785 2 071690107 88 4TcpE pointer =
0x854e5008C:\>add.exe /tcpCon 3232235842 46786 2071 690108 88 4-1062731454 46786 2071690108
88 4TcpE pointer = 0x873e6cd0C:\>
 15025644 C:\add.exe
 15025668 add.exe /proc fake102.exe 3444 500 153885 8636 30459296 1938858636 30459299
 15025820 add.exe /proc fake102.exe 3444 500 153885 8636 30459296 1938858636 30459299
 16057880 C:\add.exe
 16058414 Jadd.exe /tcpCon 3232235842 46786 2071690 108 88 4
 121129728 \Device\HarddiskVolume1\add.exe
 156099632 \Device\HarddiskVolume1\add.exe:Zone.Ide ntifier
 203505646 - add.exe
 216549258 add.exe
 228081920 \add.exe
 377807300 C:\add.exe
 387909874 add.exe
 449489936 \??\C:\add.exe
 497480968 \Device\HarddiskVolume1\add.exe
 531113536 add.exe /tcpCon 3232235842 46786 2071690 108 88 4
 553245704 C:\add.exe
 744695056 \??\C:\add.exe
 746308880 \??\C:\add.exe
 760722866 add.exe
 852455432 \add.exe
1609042694 add.exe
1857051920 C:\add.exe
1956092888 \add.exe:Zone.Identifier
1993060068 \Device\HarddiskVolume1\add.exe
2000262690 eadd.exe /file fake101.exe
2008028348 \Device\HarddiskVolume1\add.exe
2008030876 \Device\HarddiskVolume1\add.exe
2011061434 eadd.exe
2011453268 \add.exe
2011453348 \add.exe
2011453444 \add.exe
2011453524 \add.exe
2012776954 eadd.exe /file fake101.exe
2016965348 \Device\HarddiskVolume1\add.exe
2016968236 \Device\HarddiskVolume1\add.exe
2022553788 \Device\HarddiskVolume1\add.exe
2023762538 eadd.exe
2051568254 Jadd.exe /tcpCon 3232235842 46786 207169 0108 88 4
2060744282 =C:\add.exe
2060744306 ladd.exe /tcpCon 3232235842 46786 207169 0108 88 4
2060744408 add.exe /tcpCon 3232235842 46786 2071690 108 88 4
2066118248 2add.exe /file fake101.exe
2066724024 add.exe
2069369142 Jadd.exe
2069963472 add.exe
2069963522 add.exe
2071048192 C:\>add.exe /tcpCon 3232235842 46785 207 1690107 88 4 -1062731454 46785 2071690107
88 4 TcpE pointer = 0x854e5008 C:\>add.exe /tcpCon 3232235842 46786 2071690108 88 4 -
1062731454 46786 2071690108 88 4 TcpE pointer = 0x8 73e6cd0 C:\>
2072369272 `add.exe /tcpCon 3232235842 46785 207169 0107 88 4
2072369384 `add.exe /tcpCon 3232235842 46786 207169 0108 88 45 2
2072369502 ;and Prompt - add.exe /tcpCon 3232235842 46786 2071690108 88 4
2072370832 2add.exe /file fake102.exeex
2072370898 add.exe /proc fake101.exe 3333 500 14388 58636 30459296 1438858636 304592972
2072371058 add.exe /proc fake102.exe 3444 500 15388 58636 30459296 1938858636 30459
2072626776 C:\>add.exe /file fake101.exe string poi nter = 0x870687c0 string length= 22
FileObj Pool pointer = 0x873c9ee8 C:\>add.exe /file fake102.exe string pointer = 0x86fa34d0

47

string length= 22 FileObj Pool pointer = 0x87283318 C:\>add.exe /proc fake101.exe 3333 500
1438858636 30459296 1438858636 30459297 PROC pool p ointer = 0x872db430 C:\>add.exe /proc
fake102.exe 3444 500 1538858636 30459296 1938858636 30459299 PROC pool pointer = 0x8704e820
2074918054 add.exe
2074918614 IC:\add.exe
2075934576 \\?\C:\add.exe:Zone.Identifier
2107654316 \Device\HarddiskVolume1\add.exe
2107654488 \Device\HarddiskVolume1\add.exe
2107657472 \Device\HarddiskVolume1\add.exe
2109998900 evice\harddiskvolume1\add.exe
2140368058 eadd.exe

This output gives us a full picture of what happened. It also gives us a location of the executable that was used

to inject the process, file and network related fake artefacts. We can also see that those hints are put in a lot of

different places. That is why even if we do not have any results from the cmdscan or consoles plugins, it is still

possible to get some results.

Key remarks:

- The best bet is to search for a solution in the strings, but, first of all, we need at least some hints about

suspicious processes or drivers.

- Be advised that we will not always get results from strings as it can be randomly overwritten.

- Try to search for static signatures in released build like PDB parameter, if we are dealing with more

than one injected processes and lazy attacker we will have the same PDB in all fake processes.

- If the process has no handles, no dlls, and it is impossible to obtain it together with broken

timestamps, this may indicate that the memory was tampered with an anti-forensic tool.

In brief, ADD can be a very powerful tool in a favourable environment. If the attacker can enhance it – PDB

randomiser, cleaning cmd history, removing PID 0 under TCP connection artefacts and paying attention to

timestamps – than analysis of that would be much more difficult and would take a lot more time. It can also

make analysis almost impossible if this tool was only used to inject TCP connection artefacts. Given the fact

that the build signature of the released file is not recognised by virustotal.com, we can assume it will not be

picked up by antivirus software. The primary concern of the attacker is always that he requires full

administrative rights, especially the part necessary to inject required driver.

3.6.2 Dementia

Source: https://code.google.com/p/dementia-forensics/

Dementia is an anti-forensic toolkit designed for hiding various artefacts inside the memory dump during

memory acquisition on Microsoft Windows operating systems. There are two major problems with acquisition

tools. First, they are run on machines controlled by the handler, meaning attackers can have kernel-level

visibility and control over the system. Second, tools must dump their data on a local or external disk or on a

networked machine. By combining these two facts and controlling the process of dump writing, attackers can

defeat most live memory acquisition methods forensic experts and incident handlers use.

Let’s take a closer look at how memory acquisition looks like in Windows operating system. First, we need an

executable with a user interface that will allow us to get the job done. Along with the executable comes a

specific driver which either reads directly from memory device \\Device\PhysicalMemory or maps physical

memory space using function MmMapIoSpace(). Then, in order to dump the content of the memory into a

single file, the acquisition tool uses Windows API function called NtWriteFile(). The result is a file that

represents the memory content of the machine at the moment of acquisition.

Now, knowing what the whole process looks like we can start thinking about where the weakest link is in it.

Most of the acquisition tools have patterns – specific Windows API NtWriteFile() call arguments, known process

or driver names and unique FILE_OBJECT values or flags. If an anti-forensic tool is able to recognise the pattern

48

of memory acquisition and controls dumping to a file activity then we can presume that the whole process may

or will be compromised. As suspected, Dementia uses this vulnerability.

The tool supports three hiding methods:

- User-mode hiding – applications like Mandiant Memoryze or FTK Imager use their drivers as a ‘proxy’

for kernel access. The driver maps physical memory and sends the contents back to the user-mode. At

the moment this method is supported only for Mandiant Memoryze. It injects a DLL into

Memoryze.exe process, hooks DeviceIoControl() function and clears the contents of the dump.

- Kernel-mode hiding is based on hooks. It installs a driver which performs inline hooking of NtWriteFile

and NtClose functions. It then waits for memory acquisition software using various heuristic process

names or drivers, specific NtWriteFile () arguments or specific FILE_OBJECT values and flags. After

detection, it builds a list of addresses and ranges that need to be hidden. When a buffer containing a

‘tagged’ address is being written to a memory dump, the driver sanitises the buffer and removes the

artefacts from the dump. Due to additional kernel level protections this method is supported only on

32-bit systems.

- Kernel-mode hiding based on a file system mini-filter driver. Basically this method works exactly the

same as the previous one, but instead of inline hooking of kernel functions, an additional driver is

created which works as a file system mini-filter driver, sanitising the buffer as it is being written to

disk.

Dementia – general use

3.6.2.1 Testing environment

Operating systems:

- Windows 7 Ultimate x86 SP1, 2 CPU, 2GB, VMware Workstation 11.1 VM

- Windows 7 Ultimate x64 SP1, 2 CPU, 4 GB, VMware Workstation 11.1 VM

- Windows Server 2008 x86 SP2, 2 CPU, 2GB, VMware Workstation 11.1 VM

- Windows Server 2008 x64 SP2, 2 CPU, 4 GB, VMware Workstation 11.1 VM

- Windows Server 2012 R2, 2 CPU, 4GB, VMware Workstation 11.1 VM

49

Memory image acquisition tools:

- AccessData FTK Imager 3.1.1.8 – portable edition

- MoonSols Windows Memory DumpIt 1.3.2.20110401

- Win32dd/Win64dd 1.3.1.20100417 (all three methods)

- Belkasoft Live RAM Capturer

- Mdd 1.3 – ManTech Physical Memory Dump Utility

Memory image analysis tool - Volatility Framework 2.4

3.6.2.2 Testing scenario

- run ProcessHacker.exe in a separate window

- hide processes – ProcessHacker.exe (PID 3324) and cmd.exe (PID 3856)

- hide processes related to Dementia – Dementia.exe and conhost.exe

Dementia – testing scenario

3.6.2.3 Installation.

The source code is available at code.google.com. Given the fact that the first method focuses on only one

acquisition tool, our test will focus only on kernel-mode hiding methods and try to test as many acquisition

tools as possible. For testing purposes, we used a pre-compiled version of the executable. Dementia is an open-

source code, it’s possible to download it and modify according to the user’s need which makes detection

process even more complicated. Program was run from command line with administrative rights.

3.6.2.4 Volatility Framework 2.4 output

The main goal for the testing scenario was to observe how the tool works and whether it supports the most

popular memory image acquisition tools. We tested five different operating systems. The ‘kernel mode hiding

based on hooks’ method was used on x86 architecture and kernel-mode hiding based on file system mini-filter

method was used on 64 bit systems. Under Windows Server 2012 R2 we experienced system crashes (BSOD)

therefore at this moment we can presume that this system in not affected by Dementia’s mini-filter driver.

After running the scenario on Windows 7 and Windows Server 2008 both x86 and x64, we tested all imaging

tools mentioned in a testing environment. All of those tools showed the same results; therefore, in the analysis

we focused on the Windows 7 x86 image captured by Moonsols DumpIt. Win32dd and Win64dd came up with

three different mapping methods during acquisition – MmMapIoSpace() ,

\\Device\\PhisicalMemory and PFN Mapping .. All of them presented the same output:

pstree – list all active processes (before using Dementia)

Name Pid PPid Thds Hnds Time
---- --- ---- ---- ---- -----
0x85222030:explorer.exe 1764 1700 34 880 2015-08-21 11:40:18 UTC+0000
. 0x86aaad28:FTK Imager.exe 3968 1764 20 392 2015-0 8-21 11:40:58 UTC+0000
. 0x870f92a0:vmtoolsd.exe 1412 1764 8 181 2015-08-2 1 11:40:19 UTC+0000
. 0x86c3ed28:ProcessHacker 2920 1764 9 282 2015-08- 21 11:40:39 UTC+0000
 0x86a71030:wininit.exe 404 296 7 88 2015-08-21 11: 40:16 UTC+0000
. 0x86dd1030:lsm.exe 524 404 11 152 2015-08-21 11: 40:17 UTC+0000
. 0x86dc56a0:lsass.exe 516 404 10 610 2015-08-21 1 1:40:17 UTC+0000
. 0x86db9d28:services.exe 508 404 19 239 2015-08-21 11:40:17 UTC+0000

50

.. 0x86f9b030:spoolsv.exe 1284 508 18 360 2015-08-2 1 11:40:17 UTC+0000

.. 0x86b0f7e8:VSSVC.exe 2440 508 6 121 2015-08-21 1 1:40:21 UTC+0000

.. 0x86e8d490:svchost.exe 876 508 44 775 2015-08-21 11:40:17 UTC+0000

... 0x86c9ad28:taskeng.exe 3116 876 6 88 2015-08-21 11:40:48 UTC+0000

.. 0x86e51778:svchost.exe 784 508 23 432 2015-08-21 11:40:17 UTC+0000

... 0x86ede518:audiodg.exe 976 784 6 132 2015-08-21 11:40:17 UTC+0000

.. 0x86f00b48:vmtoolsd.exe 1552 508 11 303 2015-08- 21 11:40:18 UTC+0000

.. 0x870ab320:TPAutoConnSvc 240 508 10 146 2015-08- 21 11:40:19 UTC+0000

... 0x86ac66a8:TPAutoConnect 2224 240 6 130 2015-08 -21 11:40:20 UTC+0000

.. 0x86ee9030:svchost.exe 1316 508 25 320 2015-08-2 1 11:40:18 UTC+0000

.. 0x870de1f8:dllhost.exe 636 508 22 205 2015-08-21 11:40:19 UTC+0000

.. 0x86ecf8d8:svchost.exe 1460 508 13 291 2015-08-2 1 11:40:18 UTC+0000

.. 0x86e64d28:svchost.exe 824 508 24 416 2015-08-21 11:40:17 UTC+0000

... 0x85208030:dwm.exe 1716 824 7 124 2015-08-21 1 1:40:18 UTC+0000

.. 0x86ba5030:sppsvc.exe 2832 508 7 176 2015-08-21 11:40:34 UTC+0000

.. 0x86f04518:svchost.exe 1004 508 7 113 2015-08-21 11:40:17 UTC+0000

.. 0x86e77518:svchost.exe 848 508 19 609 2015-08-21 11:40:17 UTC+0000

.. 0x86df77d8:svchost.exe 696 508 13 297 2015-08-21 11:40:17 UTC+0000

.. 0x851e9030:taskhost.exe 1636 508 12 229 2015-08- 21 11:40:18 UTC+0000

.. 0x86acd7d8:svchost.exe 2232 508 7 96 2015-08-21 11:40:20 UTC+0000

.. 0x86d9b308:msdtc.exe 2152 508 16 158 2015-08-21 11:40:20 UTC+0000

.. 0x86e107a8:svchost.exe 620 508 17 377 2015-08-21 11:40:17 UTC+0000

... 0x870d4d28:WmiPrvSE.exe 252 620 8 140 2015-08-2 1 11:40:19 UTC+0000

.. 0x86f43030:svchost.exe 1136 508 22 427 2015-08-2 1 11:40:17 UTC+0000

.. 0x85207910:dllhost.exe 372 508 19 216 2015-08-21 11:40:19 UTC+0000

.. 0x86472a18:SearchIndexer 2540 508 15 606 2015-08 -21 11:40:25 UTC+0000

... 0x86b88748:SearchFilterHo 2636 2540 5 84 2015-0 8-21 11:40:25 UTC+0000

... 0x86ed39b0:SearchProtocol 2616 2540 7 259 2015- 08-21 11:40:25 UTC+0000
 0x86112030:csrss.exe 312 296 9 546 2015-08-21 11: 40:16 UTC+0000
 0x86a7ad28:csrss.exe 412 396 10 278 2015-08-21 11 :40:16 UTC+0000
. 0x86ad7d28:conhost.exe 2244 412 1 33 2015-08-21 1 1:40:20 UTC+0000
 0x86da4d28:winlogon.exe 468 396 6 122 2015-08-21 1 1:40:17 UTC+0000
 0x86ba0c28:GWX.exe 2800 2788 6 209 2015-08-21 11: 40:34 UTC+0000
 0x851496f0:System 4 0 82 494 2015-08-21 11:40:15 UTC+0000
0x85d639e0:smss.exe 2 28 4 431 2015-08-21 11:40:15 UTC+0000

To show the differences between acquired memory image and real system status, the screen shot below shows

Process Hacker output just before image acquisition.

51

pstree – list all active processes (after using Dementia)

Name Pid PPid Thds Hnds Time
---- --- ---- ---- ---- -----
 0x87091518: 0 0 0 1970-01-01 00:00:00 UTC+0000
. 0x851496f0:System 4 0 81 503 2015-08-21 11:48:34 UTC+0000
.. 0x85dd3020:smss.exe 228 4 2 30 2015-08-21 11:48 :34 UTC+0000
 0x851496f0:System 4 0 81 503 2015-08-21 11:48:34 UTC+0000
 0x86a7c6a8:wininit.exe 404 296 4 80 2015-08-21 11: 48:35 UTC+0000
. 0x86dde6b0:lsass.exe 520 404 8 571 2015-08-21 11 :48:36 UTC+0000
. 0x86dc7030:lsm.exe 528 404 11 150 2015-08-21 11: 48:36 UTC+0000
. 0x86da1770:services.exe 504 404 13 224 2015-08-21 11:48:35 UTC+0000
.. 0x86e3f9e0:svchost.exe 1344 504 21 326 2015-08-2 1 11:48:37 UTC+0000
.. 0x86f74d28:svchost.exe 1164 504 21 486 2015-08-2 1 11:48:36 UTC+0000
.. 0x86ea9030:spoolsv.exe 1304 504 14 326 2015-08-2 1 11:48:36 UTC+0000
.. 0x870a09f0:dllhost.exe 772 504 18 208 2015-08-21 11:48:38 UTC+0000
.. 0x86b35948:VSSVC.exe 2468 504 8 118 2015-08-21 1 1:48:40 UTC+0000
.. 0x86e62d28:vmtoolsd.exe 1704 504 11 298 2015-08- 21 11:48:37 UTC+0000
.. 0x8709c520:dllhost.exe 1584 504 23 202 2015-08-2 1 11:48:38 UTC+0000
.. 0x85463a48:sppsvc.exe 3124 504 5 168 2015-08-21 11:48:53 UTC+0000
.. 0x86e2a030:svchost.exe 700 504 8 288 2015-08-21 11:48:36 UTC+0000
.. 0x8704c948:TPAutoConnSvc 332 504 11 141 2015-08- 21 11:48:38 UTC+0000
... 0x86e754a0:TPAutoConnect 2216 332 6 123 2015-08 -21 11:48:39 UTC+0000
.. 0x86ed0518:svchost.exe 832 504 23 408 2015-08-21 11:48:36 UTC+0000
... 0x86ffc478:dwm.exe 1620 832 6 121 2015-08-21 1 1:48:37 UTC+0000
.. 0x86b959b0:SearchIndexer 2632 504 14 587 2015-08 -21 11:48:44 UTC+0000
... 0x86bdf788:SearchFilterHo 2724 2632 4 78 2015-0 8-21 11:48:44 UTC+0000
... 0x86bd8b00:SearchProtocol 2704 2632 8 261 2015- 08-21 11:48:44 UTC+0000
.. 0x86ecdd28:taskhost.exe 1484 504 12 243 2015-08- 21 11:48:37 UTC+0000
.. 0x86efa650:svchost.exe 868 504 15 561 2015-08-21 11:48:36 UTC+0000
.. 0x86e7d518:svchost.exe 784 504 21 411 2015-08-21 11:48:36 UTC+0000
... 0x86f19600:audiodg.exe 976 784 7 132 2015-08-21 11:48:36 UTC+0000
.. 0x87086518:svchost.exe 1124 504 7 94 2015-08-21 11:48:38 UTC+0000

52

.. 0x86ec6bb8:svchost.exe 1512 504 12 265 2015-08-2 1 11:48:37 UTC+0000

.. 0x86e09100:svchost.exe 624 504 13 368 2015-08-21 11:48:36 UTC+0000

.. 0x87171900:msdtc.exe 2164 504 15 153 2015-08-21 11:48:39 UTC+0000

.. 0x86f34c70:svchost.exe 1016 504 6 111 2015-08-21 11:48:36 UTC+0000

.. 0x86f0aba8:svchost.exe 892 504 43 837 2015-08-21 11:48:36 UTC+0000

... 0x86c3a030:taskeng.exe 3384 892 8 89 2015-08-21 11:49:07 UTC+0000
 0x85d01d28:csrss.exe 312 296 9 497 2015-08-21 11: 48:35 UTC+0000
 0x86a80920:csrss.exe 412 396 10 301 2015-08-21 11 :48:35 UTC+0000
 0x86da6650:winlogon.exe 468 396 6 125 2015-08-21 1 1:48:35 UTC+0000
 0x86c7c988:GWX.exe 3088 3076 7 205 2015-08-21 11: 48:53 UTC+0000
 0x85240d28:explorer.exe 1740 1592 37 874 2015-08-2 1 11:48:37 UTC+0000
. 0x87066828:vmtoolsd.exe 356 1740 7 179 2015-08-21 11:48:38 UTC+0000

psscan – list hidden and terminated processes; for this image does not produce any output.

psxview – cross reference processes with various lists (before using Dementia)

Offset(P) Name PID pslist psscan thrdproc pspcid csrss session deskthr d
 ExitTime
0x7e29ad28 taskeng.exe 3116 True False True True T rue True True
0x7e471030 wininit.exe 404 True False True True Tr ue True True
0x7e0d39b0 SearchProtocol 2616 True False True True True True True
0x7e08d490 svchost.exe 876 True False True True Tr ue True True
0x7e0de518 audiodg.exe 976 True False True True Tr ue True True
0x7e588748 SearchFilterHo 2636 True False True True True True True
0x7e3f77d8 svchost.exe 696 True False True True Tr ue True True
0x7e5a0c28 GWX.exe 2800 True False True True True True True
0x7e104518 svchost.exe 1004 True False True True T rue True True
0x7e4cd7d8 svchost.exe 2232 True False True True T rue True True
0x7e0cf8d8 svchost.exe 1460 True False True True T rue True True
0x7e064d28 svchost.exe 824 True False True True Tr ue True True
0x7e3c56a0 lsass.exe 516 True False True True True True False
0x7e19b030 spoolsv.exe 1284 True False True True T rue True True
0x7ea72a18 SearchIndexer 2540 True False True True True True True
0x7e0e9030 svchost.exe 1316 True False True True T rue True True
0x7e3b9d28 services.exe 508 True False True True Tr ue True False
0x7e3a4d28 winlogon.exe 468 True False True True Tr ue True True
0x7e3d1030 lsm.exe 524 True False True True True T rue False
0x7e39b308 msdtc.exe 2152 True False True True Tru e True True
0x7e23ed28 ProcessHacker 2920 True False True True True True True
0x7deab320 TPAutoConnSvc 240 True False True True T rue True True
0x7e4aad28 FTK Imager.exe 3968 True False True True True True True
0x7e100b48 vmtoolsd.exe 1552 True False True True T rue True True
0x7fc22030 explorer.exe 1764 True False True True T rue True True
0x7e143030 svchost.exe 1136 True False True True T rue True True
0x7e051778 svchost.exe 784 True False True True Tr ue True True
0x7e5a5030 sppsvc.exe 2832 True False True True Tr ue True True
0x7def92a0 vmtoolsd.exe 1412 True False True True T rue True True
0x7fc07910 dllhost.exe 372 True False True True Tr ue True True
0x7ff68030 taskhost.exe 1636 True False True True T rue True True
0x7e50f7e8 VSSVC.exe 2440 True False True True Tru e True True
0x7e4c66a8 TPAutoConnect 2224 True False True True True True True
0x7ded4d28 WmiPrvSE.exe 252 True False True True Tr ue True True
0x7e0107a8 svchost.exe 620 True False True True Tr ue True True
0x7fc08030 dwm.exe 1716 True False True True True True True
0x7dede1f8 dllhost.exe 636 True False True True Tr ue True True
0x7e4d7d28 conhost.exe 2244 True False True True T rue True True
0x7e077518 svchost.exe 848 True False True True Tr ue True True
0x7e47ad28 csrss.exe 412 True False True True Fals e True True
0x7ef12030 csrss.exe 312 True False True True Fals e True True
0x7f3639e0 smss.exe 228 True False True True False False False
0x7ffc86f0 System 4 True False True True False Fal se False

psxview – cross reference processes with various lists (after using Dementia)

Offset(P) Name PID pslist psscan thrdproc pspcid csrss session deskthrd
 ExitTime
0x7e009100 svchost.exe 624 True False True True Tr ue True True
0x7e119600 audiodg.exe 976 True False True True Tr ue True True
0x7e149bf0 DumpIt.exe 3568 False False True True T rue False True
0x7e5df788 SearchFilterHo 2724 True False True True True True True
0x7df08610 dllhost.exe 3312 False False True True True True True

53

0x7e0d0518 svchost.exe 832 True False True True Tr ue True True
0x7e3a6650 winlogon.exe 468 True False True True Tr ue True True
0x7e10aba8 svchost.exe 892 True False True True Tr ue True True
0x7de86518 svchost.exe 1124 True False True True T rue True True
0x7e2e2300 dllhost.exe 2356 False False True True True False True
0x7e174d28 svchost.exe 1164 True False True True T rue True True
0x7de9c520 dllhost.exe 1584 True False True True T rue True True
0x7e02a030 svchost.exe 700 True False True True Tr ue True True
0x7fc40d28 explorer.exe 1740 True False True True T rue True True
0x7e090a18 conhost.exe 3576 False False True True True False True
0x7e3c7030 lsm.exe 528 True False True True True T rue False
0x7e47c6a8 wininit.exe 404 True False True True Tr ue True True
0x7e23a030 taskeng.exe 3384 True False True True T rue True False
0x7e3de6b0 lsass.exe 520 True False True True True True False
0x7e535948 VSSVC.exe 2468 True False True True Tru e True True
0x7e2fc030 dllhost.exe 3032 False False False True True False False
 2015-08-21 11:50:32 UTC+0000
0x7e0c6bb8 svchost.exe 1512 True False True True T rue True True
0x7e0754a0 TPAutoConnect 2216 True False True True True True False
0x7e27c988 GWX.exe 3088 True False True True True True False
0x7de4c948 TPAutoConnSvc 332 True False True True T rue True True
0x7df71900 msdtc.exe 2164 True False True True Tru e True True
0x7e0fa650 svchost.exe 868 True False True True Tr ue True True
0x7e0cdd28 taskhost.exe 1484 True False True True T rue True False
0x7e5d8b00 SearchProtocol 2704 True False True True True True False
0x7e03f9e0 svchost.exe 1344 True False True True T rue True True
0x7e3a1770 services.exe 504 True False True True Tr ue True False
0x7e0a9030 spoolsv.exe 1304 True False True True T rue True True
0x7de66828 vmtoolsd.exe 356 True False True True Tr ue True False
0x7e134c70 svchost.exe 1016 True False True True T rue True True
0x7e062d28 vmtoolsd.exe 1704 True False True True T rue True True
0x7e5959b0 SearchIndexer 2632 True False True True True True True
0x7dea09f0 dllhost.exe 772 True False True True Tr ue True True
0x7fa63a48 sppsvc.exe 3124 True False True True Tr ue True True
0x7e1fc478 dwm.exe 1620 True False True True True True False
0x7e07d518 svchost.exe 784 True False True True Tr ue True True
0x7f301d28 csrss.exe 312 True False True True Fals e True True
0x7f3d3020 smss.exe 228 True False True True False False False
0x7e480920 csrss.exe 412 True False True True Fals e True True
0x7ffc86f0 System 4 True False True True False Fal se False
0x7de91518 0 True False False False False True F alse

We are not analysing network related activities; therefore, command netscan will not produce any viable

information.

3.6.2.5 Analysis of the results and possible mitigation techniques.

3.6.2.5.1 Interpretation of the results:

- pstree shows that the tool works properly with no visible processes related to ProcessHacker

application, the dementia tool, cmd.exe or conhost.exe. There is one thing that makes this image

suspicious. Every time we do live acquisition there are remnants of this activity in the memory images

– the memory acquisition tool process. In our case, only psxview shows us additional information

about that. It means that something suspicious unlinked DumpIt.exe process.

- psscan gives us no additional output, and no hidden/unlinked processes were found on the system.

- psxview enumerates processes using different techniques. If Dementia attempts to hide processes it

will have to evade detection in a number of different ways. Looking at the output, there is one

suspicious process called conhost.exe PID: 3576, but further analysis showed that this process was

related to the acquisition tool. We can see that Dementia completely evaded capturing our scenario

processes. There are no thread processes, no artefacts in PspCidTable, csrss, session structures or

desktop threads related to ProcessHacker, Dementia, cmd.exe or conhost.exe. Interesting is that

DumpIT.exe process (memory acquisition tool) was unlinked while there are still threads related to it.

54

At this point only suspicious activity is around the DumpIT.exe process has drawn our attention. Knowing that

Dementia needs a special driver in order to hide processes in memory, let us move on to loaded, unloaded and

unlinked drivers using modscan.

vol.py -f w7_dementia_after.raw --profile=Win7SP1x8 6 modscan

Offset(P) Name Base Size File
------------------ -------------------- ---------- ---------- ----
0x000000007de011c8 secdrv.SYS 0x97549000 0xa000 \Sy stemRoot\System32\Drivers\secdrv.SYS
0x000000007de14d68 srvnet.sys 0x97553000 0x21000 \S ystemRoot\System32\DRIVERS\srvnet.sys
0x000000007de26468 tcpipreg.sys 0x97574000 0xd000 \ SystemRoot\System32\drivers\tcpipreg.sys
0x000000007df0a9c0 srv.sys 0x96235000 0x52000 \Sys temRoot\System32\DRIVERS\srv.sys
0x000000007e017130 luafv.sys 0x89895000 0x1b000 \S ystemRoot\system32\drivers\luafv.sys
0x000000007e078b48 bowser.sys 0x94d8b000 0x19000 \S ystemRoot\system32\DRIVERS\bowser.sys
.
.
.
0x007e2d19c0 DumpIt.sys 0x96316000 0xc0 \??\C:\Wind ows\system32\Drivers\DumpIt.sys
0x000000007e496f38 cdd.dll 0x94380000 0x1e000 \Sys temRoot\System32\cdd.dll
0x000000007e521768 DementiaKM.sys 0x962fa000 0x1c00 0 \??\C:\d\DementiaKM.sys
0x000000007ea3e008 NDProxy.SYS 0x90f33000 0x11000 \ SystemRoot\System32\Drivers\NDProxy.SYS
.
.
.
0x000000007f037e50 usbuhci.sys 0x8ff30000 0xb000 \S ystemRoot\system32\DRIVERS\usbuhci.sys
0x000000007f046008 USBPORT.SYS 0x8ff3b000 0x4b000 \ SystemRoot\system32\DRIVERS\USBPORT.SYS

We scan services using plugin – svcscan.

vol.py -f w7_dementia_after.raw --profile=Win7SP1x8 6 svcscan

Offset: 0x882a40
Order: 413
Start: SERVICE_DEMAND_START
Process ID: -
Service Name: DementiaKM
Display Name: DementiaKM
Service Type: SERVICE_KERNEL_DRIVER
Service State: SERVICE_RUNNING
Binary Path: \Driver\DementiaKM

We have a suspicious location for a driver – DementiaKM.sys and a service called DementiaKM. The attack can,

of course, change this. In order to avoid detection, both the location and the name need to be enhanced. If we

try to recover the command history using the cmdscan or consoles plugin we will not get any output, simply

because command line processes were hidden by Dementia during memory acquisition. In this case, let’s try to

search for artefacts in strings.

First, we have to create Ascii and Unicode strings file.

srch_strings -a -t d w7_dementia_after.raw > string s.txt
srch_strings -a -t d -el w7_dementia_after.raw >> s trings.txt

Then, let’s browse strings.txt file for suspicious driver string.

cat strings.txt |grep DementiaKM.sys

249414356 name of the kernel-mode driver (default: ‘DementiaKM.sys’)
1895632596 name of the kernel-mode driver (default: ‘DementiaKM.sys’)
 134271492 DementiaKM.sys
 150102490 DementiaKM.sys
 154481104 DementiaKM.sys
 164425608 \d\DementiaKM.sys
 172129642 DementiaKM.sys
 183392104 DementiaKM.sys`
 214122210 DementiaKM.sys
 216371130 DementiaKM.sys
 243016016 DementiaKM.sys
 243019150 -d|--driver - name of the kernel-mode dr iver (default: DementiaKM.sys)
 430321208 C:\d\DementiaKM.sys
 503215912 \Device\HarddiskVolume1\d\DementiaKM.sys

55

 571430372 \d\DementiaKM.sys
 589959320 \Device\HarddiskVolume1\d\DementiaKM.sys
 598253860 C:\d\DementiaKM.sys
 598254080 (\Device\HarddiskVolume1\d\DementiaKM.sy s
 611517522 \??\C:\d\DementiaKM.sys
 741675172 \??\C:\d\DementiaKM.sys
1582231432 \??\C:\d\DementiaKM.sys
1894055248 DementiaKM.sys
1895631246 -d|--driver - name of the kernel-mode dr iver (default: DementiaKM.sys)
1949748964 \d\DementiaKM.sys
1949749132 \d\DementiaKM.sys
1951321900 \Device\HarddiskVolume1\Windows\System32 \catroot\{F750E6C3-38EE-11D1-85E5-
00C04FC295EE}\Package_3_for_KB29\DementiaKM.sys
1951322204 \d\DementiaKM.sys
1960072924 \Device\HarddiskVolume1\d\DementiaKM.sys
1972210148 \Device\HarddiskVolume1\d\DementiaKM.sys
2119309252 DementiaKM.sys
2139533028 \d\DementiaKM.sys
2139533196 \d\DementiaKM.sys
2139533308 \d\DementiaKM.sys
2139533404 \d\DementiaKM.sys
2139776732 \Device\HarddiskVolume1\d\DementiaKM.sys
2143715480 \Device\HarddiskVolume1\d\DementiaKM.sys
2143785252 C:\d\DementiaKM.sys
2143785472 (\Device\HarddiskVolume1\d\DementiaKM.sy s

cat strings.txt |grep Dementia

162528984 D:\FSEC2012\Dementia-googlecode\Release\S ymbolHelper.pdb
 249414356 name of the kernel-mode driver (default: ‘DementiaKM.sys’)
 250673608 D:\FSEC2012\Dementia-googlecode\Release\ Dementia.pdb
 261026280 d:\fsec2012\dementia\dement~1\objchk_wne t_x86\i386\DementiaKM.pdb
 503022682 Dementia
 503024386 Dementia
 508780786 Dementia
 742130640 DementiaKMwayDef
1881486792 D:\FSEC2012\Dementia-googlecode\Release\ Dementia.pdb
1895632596 name of the kernel-mode driver (default: ‘DementiaKM.sys’)
2078548456 d:\fsec2012\dementia\dement~1\objchk_wne t_x86\i386\DementiaKM.pdb
2107163600 Dementia-1.0-x64.zip
2107163776 Dementia-1.0.zip
2112265272 Dementia.exe
 83443200 \Device\HarddiskVolume1\d\Dementia.exe
 134271352 Dementia kernel-mode driver
 134271492 DementiaKM.sys
 134271668 DementiaKM
 134271724 Dementia kernel-mode driver
 140278736 \Device\HarddiskVolume1\d\Dementia.exe
 147957896 \d\Dementia.exe
 150102266 Dementia.exe
 150102378 DementiaFS.sys
 150102490 DementiaKM.sys
 154481104 DementiaKM.sys
 154481832 \d\Dementia.exe
 164425608 \d\DementiaKM.sys
 169514408 The service DementiaKM (DementiaKM) has been created.
 169515128 The service DementiaKM (DementiaKM) has been created.
 172127474 Dementia.exe
 172128618 DementiaFS.sys
 172129642 DementiaKM.sys
 175243488 DementiaKM
 181843364 Administrator: Command Prompt - Dementia .exe -m 2 -a ‘-p 3324 -p 3856 -P
Dementia.exe -P conhost.exe’
 183391664 C:\d\Dementia.exe
 183391700 \??\C:\d\Dementia.exe
 183391912 Dementia.exe
 183392008 DementiaFS.sys`
 183392104 DementiaKM.sys`
 189969988 m 2 -a ‘-p 3324 -p 3856 -P Dementia.exe -P conhost.exe’
 194812090 DementiaFS.sys
 199059008 Dementia.exe -m 2 -a ‘-p 3324 -p 3856 -P Dementia.exe -P conhost.exe’
 211049176 \Device\DementiaKM
 214121986 Dementia.exe
 214122098 DementiaFS.sys
 214122210 DementiaKM.sys

56

 216371130 DementiaKM.sys
 229842704 \Device\HarddiskVolume1\d\DementiaFS.sys
 237026338 \Dementia-1.0-x64.z
 237129728 56 -P Dementia.exe -P conhost.exe’
 240738168 Administrator: Command Prompt - Dementia .exe -m 2 -a ‘-p 3324 -p 38
 243015992 DementiaKM
 243016016 DementiaKM.sys
 243019150 -d|--driver - name of the kernel-mode dr iver (default: DementiaKM.sys)
 249416116 \DementiaPort
 250469080 Dementia - v1.0 -- Windows memory anti-f orensics suite
 250469818 Use: Dementia.exe [-h|--help -d|--debug -f|--file] -m <evasion_method> [-a|--
args]
 261026092 \DosDevices\DementiaKM
 261026140 \Device\DementiaKM
 262873248 Dementia.exe
 265272504 C:\d\Dementia.exe
 266174984 C:\d\Dementia.exe
 419579602 DementiaKM
 419579624 DementiaKM
 430321208 C:\d\DementiaKM.sys
 450568944 \??\C:\d\Dementia.exe
 456898420 DementiaKM
 476186698 Dementia.exe
 481731200 Administrator: Command Prompt - Dementia .exe -m 2 -a ‘-p 3324 -p 3856 -P
Dementia.exe -P conhost.exe’
 484882744 Administrator: Command Prompt - Dementia .exe -m 2 -a ‘-p 3324 -p 3856 -P
Dementia.exe -P conhost.exe’
 486757018 DementiaKM
 486757044 \Driver\DementiaKM
 503022734 Dementia
 503024438 Dementia
 503215912 \Device\HarddiskVolume1\d\DementiaKM.sys
 505081472 \Driver\DementiaKM
 508780838 Dementia
 518175504 DementiaKM
 560621688 \Device\HarddiskVolume1\d\Dementia.exe
 571430372 \d\DementiaKM.sys
 589959320 \Device\HarddiskVolume1\d\DementiaKM.sys
 598253838 DementiaKM
 598253860 C:\d\DementiaKM.sys
 598254080 (\Device\HarddiskVolume1\d\DementiaKM.sy s
 599409580 C:\d\Dementia.exe
 604618520 C:\d\Dementia.exe
 611060940 DementiaKM
 611517492 DementiaKM
 611517522 \??\C:\d\DementiaKM.sys
 613400642 Registry\Machine\System\CurrentControlSe t\Services\DementiaKM
 614654488 DementiaKMx
 615914188 DementiaKM
 627067444 DementiaKM
 628702404 DementiaKM
 683486000 DementiaKM
 740126244 DementiaKM
 741675172 \??\C:\d\DementiaKM.sys
 744982412 DementiaKM
 746249158 \??\C:\d\Dementia.exe
 746281926 \??\C:\d\Dementia.exe
 747055020 DementiaKM
 747794720 \??\C:\d\Dementia.exe
1582231432 \??\C:\d\DementiaKM.sys
1840800404 DementiaKM
1861412494 DementiaKM
1861412516 DementiaKM
1874465428 DementiaKM
1891444440 Dementia - v1.0 -- Windows memory anti-f orensics suite
1891445178 Use: Dementia.exe [-h|--help -d|--debug -f|--file] -m <evasion_method> [-a|--
args]
1893537204 \DementiaPort
1894055224 DementiaKM
1894055248 DementiaKM.sys
1894059004 Dementia-1.0-x64
1895631246 -d|--driver - name of the kernel-mode dr iver (default: DementiaKM.sys)
1898158264 Dementia.exe
1900341524 Dementia-1.0
1949748964 \d\DementiaKM.sys
1949749132 \d\DementiaKM.sys
1951321900 \Device\HarddiskVolume1\Windows\System32 \catroot\{F750E6C3-38EE-11D1-85E5-

57

00C04FC295EE}\Package_3_for_KB29\DementiaKM.sys
1951322204 \d\DementiaKM.sys
1960072820 \Device\HarddiskVolume1\d\DementiaFS.sys
1960072924 \Device\HarddiskVolume1\d\DementiaKM.sys
1972210044 \Device\HarddiskVolume1\d\DementiaFS.sys
1972210148 \Device\HarddiskVolume1\d\DementiaKM.sys
1979008578 Dementia.exe -m 2 -a ‘-p 3324 -p 3856 -P Dementia.exe -P conhost.exe’
1986187812 DementiaKM
2078548268 \DosDevices\DementiaKM
2078548316 \Device\DementiaKM
2113121472 DementiaKM
2119309252 DementiaKM.sys
2139533028 \d\DementiaKM.sys
2139533196 \d\DementiaKM.sys
2139533308 \d\DementiaKM.sys
2139533404 \d\DementiaKM.sys
2139776628 \Device\HarddiskVolume1\d\DementiaFS.sys
2139776732 \Device\HarddiskVolume1\d\DementiaKM.sys
2143715480 \Device\HarddiskVolume1\d\DementiaKM.sys
2143785230 DementiaKM
2143785252 C:\d\DementiaKM.sys
2143785472 (\Device\HarddiskVolume1\d\DementiaKM.sy s
2143985818 DementiaKMt
2143985920 :\REGISTRY\MACHINE\SYSTEM\ControlSet001\ services\DementiaKM
2143986120 :\REGISTRY\MACHINE\SYSTEM\ControlSet001\ services\DementiaKM
2143986330 DementiaKM
2143986356 \Driver\DementiaKM
2145216188 ‘-p 3324 -p 3856 -P Dementia.exe -P conh ost.exe’

The last output (|grep Dementia) gives us additional information about what happened. It also gives us the

location of the executable that was used to hide the processes. You can see that those hints are in a lot of

different places. Therefore, it is almost impossible to hide it once you have discovered additional hints about a

suspicious driver or Windows service. Dementia needs them in order to run properly. Of course name and

location can be randomised, but it is still possible to find artefacts. The main problem is that all those artefacts

will be connected to Dementia, not to the hidden processes. If this tool succeeds during memory imaging, we

will be left with no evidence about what happened to the investigating system.

There is also one additional place where we can find evidence of tampering memory images with this tool.

Since we learned from the website that in order to hide processes Dementia uses NtClose and NtWriteFile API

functions. We can use apihooks plugin to check if there is something suspicious hooked to those APIs.

Command:

vol.py -f w7_dementia_after.raw --profile=Win7SP1x8 6 apihooks > grep –B 4 –A 25 NtClose

will give us additional hints:

*** *********************
Hook mode: Kernelmode
Hook type: Inline/Trampoline
Victim module: ntoskrnl.exe (0x82a0a000 - 0x82e2300 0)
Function: ntoskrnl.exe!NtClose at 0x82c52bf2
Hook address: 0x962fca40
Hooking module: DementiaKM.sys
Disassembly(0):
0x82c52bf2 e9499e6a13 JMP 0x962fca40
0x82c52bf7 51 PUSH ECX
0x82c52bf8 51 PUSH ECX
0x82c52bf9 64a124010000 MOV EAX, [FS:0x124]
0x82c52bff 833d68d4b48200 CMP DWORD [0x82b4d468], 0x0
0x82c52c06 8a DB 0x8a
0x82c52c07 803a01 CMP BYTE [EDX], 0x1

Disassembly(1):
0x962fca40 8bff MOV EDI, EDI
0x962fca42 55 PUSH EBP
0x962fca43 8bec MOV EBP, ESP
0x962fca45 83ec0c SUB ESP, 0xc

58

0x962fca48 c645ff00 MOV BYTE [EBP-0x1], 0x0
0x962fca4c 837d0800 CMP DWORD [EBP+0x8], 0x0
0x962fca50 742e JZ 0x962fca80
0x962fca52 8b4508 MOV EAX, [EBP+0x8]
0x962fca55 50 PUSH EAX
0x962fca56 e8 DB 0xe8
0x962fca57 85 DB 0x85

We can do the same with NtWriteFile API:

vol.py -f w7_dementia_after.raw --profile=Win7SP1x8 6 apihooks > grep –B 4 –A 25 NtWriteFile

*** *********************
Hook mode: Kernelmode
Hook type: Inline/Trampoline
Victim module: ntoskrnl.exe (0x82a0a000 - 0x82e2300 0)
Function: ntoskrnl.exe!NtWriteFile at 0x82c7ded2
Hook address: 0x962fc8f0
Hooking module: DementiaKM.sys

Disassembly(0):
0x82c7ded2 e919ea6713 JMP 0x962fc8f0
0x82c7ded7 a6 CMPSB
0x82c7ded8 82e87a SUB AL, 0x7a
0x82c7dedb bee0ff33f6 MOV ESI, 0xf633ffe0
0x82c7dee0 8975dc MOV [EBP-0x24], ESI
0x82c7dee3 8975d0 MOV [EBP-0x30], ESI
0x82c7dee6 8975a4 MOV [EBP-0x5c], ESI
0x82c7dee9 89 DB 0x89

Disassembly(1):
0x962fc8f0 8bff MOV EDI, EDI
0x962fc8f2 55 PUSH EBP
0x962fc8f3 8bec MOV EBP, ESP
0x962fc8f5 83ec0c SUB ESP, 0xc
0x962fc8f8 837d0c00 CMP DWORD [EBP+0xc], 0x0
0x962fc8fc 0f8505010000 JNZ 0x962fca07
0x962fc902 837d1000 CMP DWORD [EBP+0x10], 0x0
0x962fc906 0f DB 0xf
0x962fc907 85 DB 0x85

Key remarks:

- First of all we should start with identification of our imaging tool among running processes, if we

cannot find it using the pstree plugin then that is a strong indicator that something unlinked this

process in order to modify the output.

- The best option is to search for a solution is to search for Dementia indicators using the apihooks

plugin. If there is something hooked to NtClose and NtFileWrite API functions we should definitely

investigate it.

- We should always check for possible artefacts in the strings, but, first of all, we need at least hints

about suspicious services or drivers. We will not always get results from strings as they can be

randomly overwritten.

- Dementia has the ability to hide itself. In order to achieve that it has to be run with a ‘–P [Dementia

executable name]’ argument.

- Another possible approach to detect Dementia would be to capture all the processes using Process

Hacker or Process Explorer during live acquisition and then compare it with Volatility pslist, psxview

plugins against captured memory image. If Dementia is in the system, we may observe some missing

processes.

- The tool relies on various heuristics of acquisition tools like process name, driver, file object values and

flags (see table below). In order to be completely resilient, we would have to randomise all these

‘patterns’ and create custom memory imaging tool.

59

Table below shows parameters that can be used to detect the presence of memory imaging tool.

Tool Handle IO Buffer Length Offset Key Add.

Flags Process Ext. Driver FILE_OBJECT
flags

FTK Imager UM UM UM 0x8000 0 NULL W,SR,SW
FTK

Imager.exe mem ad_driver.sys 0x40042
MDD UM UM UM 0x1000 0 NULL W mdd_1.3.exe * mdd.sys 0x40042

Memoryze UM UM UM
mostly

0x1000 0 NULL W,SR,SW Memoryze.exe img mktools.sys 0x40042
OSForensics KM KM UM 0x1000 KM NULL W osf32.exe bin DirectIo32 0x40062

Win32DD KM KM KM
variable
(0x1000 –

0x100000) KM NULL R,W,SR,SW win32dd.exe * win32dd.sys 0x4000a
Winen

(EnCase) UM UM UM
totally

variable 0 NULL R,W,SR,SW winen.exe E01 winen_.sys 0x40062

Winpmem UM UM UM 0x1000 0 NULL W,SR winpmem_...* *
*(temporary

file
- random) 0x40042

To summarise, the Dementia tool currently renders most memory acquisition applications completely

vulnerable, although it is quite easy to detect. Keeping in mind that this project is open-source, the final version

will be customised by possible attackers and possibly will become more difficult to find. Once it detects the

acquisition process, the captured memory image will be stripped of any relevant evidence. Additionally, it

requires full administrative rights in order to inject additional drivers, just like the ADD tool. Analysing the build

signature of the executable or Dementia drivers in virustotal.com gives no indicators whether or not these files

are suspicious or harmful; therefore, they will not be picked up by any antivirus software.

3.7 Microsoft anti-forensic settings

3.7.1 Leave no trace in Windows

The Windows Operating System (OS) contains a multitude of different types of artefacts that are very useful

during the forensic investigation and reveal suspicious activities. This chapter contains general counter-forensic

settings that minimise digital footprints and prevent an investigator from proving what has been done even if

the forensic examiner has, for example, access to the compromised computer.[33]

3.7.2 Disabling timestamps

Using the timestamps, a forensic analyst can build a timeline that can be very helpful when cross-referenced

with other known device. Disabling this functionality makes the investigation harder. There are a variety of

ways of doing it.

1. Disable UserAssist logging.

• UserAssist is a registry key that keeps dates/times, count and path to executable of the

applications launched by a user.

• Create a new key named ‘Settings’ in UserAssist. In this key create DWORD value named NoLog,

set the value to 1.

2. Disable prefetching.

• Disabled service Superfetch (Service name is SysMain).

60

3. Disable last access time.

• fsutil behavior set DisableLastAccess 1 (host has to be restarted).

• Configure HKLM\SYSTEM\CurrentControlSet\Control\FileSystem key and

NtfsDisableLastAccessUpdate

• Sefault settings for Win7/Win8 is 1 (disabled).

3.7.3 Additional settings

3.7.3.1 Disable hibernation

This functionality can be configured through the Control Panel graphical user interface (Power options) or using

the command powercfg /hibernate on (or off). Another way to do it is to change registry values in

HKLM\SYSTEM\CurrentControlSet\Control\Power for both HiberFileSizePercent and HibernateEnabled.

3.7.3.2 Delete the history of USB activities

USBSTOR registry key contains the history of USB devices. To hide the use of a USB device, the content of the

HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR key is often deleted. Another artefact that stores

information about USB activity is setupapi.dev.log file, which is located in C:\Windows\INF folder.

3.7.3.3 Disable System Restore point (or Volume Shadow Copy)

A change to the Restore settings can be done through System Protection tab in System Properties GUI. It is

possible to delete a specific Volume Shadow Copy using the command vssadmin delete shadows.

To avoid the presence of suspicious files in Volume Shadow Copy (VSS), it is possible to exclude files from

Shadow Copies. A VSS application can delete files from a shadow copy during shadow copy creation by using

the following registry key HKLM\SYSTEM\CurrentControlSet\Control\BackupRestore\FilesNotToSnapshot. The

files are specified by fully qualified paths.[34]

3.7.3.4 Disable debugging upon failure or application crash

To disable investigator to get information from pop-up dialog windows after application failure or crash, the

following has to be configured:

• Through Control Panel – System and Security – Action Center – Problem Reporting Settings and

select ‘Never check for solutions’.

• Set registry to 1 for value DontShowUI in HCU\Software\Microsoft\Windows\Windows Error

Reporting.

3.7.3.5 Disable Windows Event logging

Windows OS generates many event logs and they very often contain crucial information for an investigation.

Disabling logging or deleting event logs is one of the basic techniques for frustrating incident responder or

investigator. To disable Windows Event Log service:

• From command line:

REG add ‘HKLM\SYSTEM\CurrentControlSet\services\eventlog’ /v Start /t REG_DWORD /d 4 /f

• Or using msconfig, go to Services tab and locate Windows Event Log. Then uncheck the box to

prevent this service to start.

61

• Or disable it directly in services.msc console find Windows Event Log service and in service

properties change the startup type to Disabled.

1. Delete content of the pagefile.sys file before the system is turned off or delete file [35]

• Change the data value of the ClearPageFileAtShutdown value in the following registry key to a

value of 1: HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management.

• Or disable it from Advanced System Settings at the Advanced tab.

3.7.4 Key remarks

To configure most of these settings requires administrative privileges, and to apply them a restart is usually

needed. Detection of suspicious settings can be achieved, for example, by checking or listing values from the

registry using pre-prepared script during the incident response process.

CCleaner is actually an example of an anti-forensic tool for Windows. This application can be used for wiping

important evidence of any malicious activity. Therefore, the discovery of any artefact related to CCleaner may

also be a proof of possible anti-forensic activity.

62

 Conclusions 4

Recently, anti-forensic techniques have been the subject of much discussion. Some has tried to make us believe

that the forensic process is in the state of decay. Others to convince us to remain in the blessed state of

confidence that the forensic tools and expert’ knowledge will solve everything no matter how sophisticated

were the techniques thrown against the investigating system. In our paper, we have tried to stay somewhere in

the middle. Starting from timestamp manipulation tools, through data hiding, DOS attacks on DFTs and use of

external media and RAM memory based tools, we have shown how powerful they can be in the hands of skilled

criminals. These are just the most known examples which can be found on the internet. Our goal was also to

explain how host-related anti-forensic tools work in practice, and the major challenges to fight them. We saw

one area of common ground to remain one step ahead of them – live acquisition and memory analysis. There is

no need to explain how beneficial it may become to use strings, especially against memory images or volatility

plugins like cmdscan or consoles. We have to be aware that some malicious activities will only become visible

in the memory since they do not touch the hard drive at all. But there are also drawbacks. We cannot

completely rely on memory analysis without double checking the output and the final result that is the memory

image. We presented tools which might tamper with the evidence before we even started analysing it.

Therefore, there is a strong need for custom imaging tools and specific procedures to avoid the situation where

we are left with evidence that is no use to the case we are working on. There are some hints in this paper how

to prepare for such moments.

For the future work, since all stolen data has to be exfiltrated, either physically or over a network, we should

also investigate techniques like steganography or network related tools that allow the attackers to remain

undetected and transfer acquired information to a place where it can be used. This is the field where we can be

even more successful with the right use of forensic tools. If we are able to break the last phase of the cyber kill

chain then the attack was not successful and the integrity of our systems can be easily restored.

Finally, in our paper, all the anti-forensic techniques were analysed one by one. For a better understanding of

how they can be implemented in the real world, it would be advisable to create a separate scenario that

combines most of them into one multi-layered case. This will show how much complexity the combination

brings.

63

References

[1] G. Palmer. A Road Map for Digital Forensic Research. Technical Report DTRT0010-01, DFRWS,

November 2001. Report from the First Digital Forensic Research Workshop (DFRWS).

[2] Soltan AlharbiJ ens Weber-Jahnke, Issa Traore. ‘The Proactive and Reactive Digital Forensics

Investigation’, 2015. [Online]. http://www.researchgate.net/publication/220849931_The_Proactive_and_Reactive_Dig

[3] Attention Deficit Disorder. Google Code. [Online]

https://code.google.com/p/attention-deficit-disorder/

[4] ‘Changes to the file system and to the storage stack to restrict direct disk access and direct volume

access in Windows Vista and in Windows Server 2008’. [Online].

https://support.microsoft.com/en-gb/kb/942448

[5] David Cowen, Hacking Exposed – Computer Forensic Blog. [Online]. http://www.hecfblog.com/2013/10/daily-

blog-130-detecting-fraud-sunday.html

[6] Jason Hale, Digital Forensic Stream. ‘The NTFS $LogFile and setMACE’. [Online].

http://dfstream.blogspot.com/2012/01/ntfs-logfile-and-setmace.html

[7] Wicher Minnaard, ‘Timestomping NTFS’. [Online]

https://www.os3.nl/_media/2013-2014/courses/rp2/p48_presentation.pdf

[8] Ligh, Michael Hale, Andrew Case, Jamie Levy, and Aaron Walters. ‘The art of memory forensics:

detecting malware and threats in Windows, Linux, and Mac memory’. John Wiley & Sons, 2014.

[9] Wikipedia. [Online]

https://en.wikipedia.org/wiki/Billion_laughs

[10] AERAsec Network Services and Security. [Online].

http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html

[11] File analysis. Virustotal.com. [Online].

https://www.virustotal.com/en/file/db6981082063dbb4bac89d27c41fbeb86d9e4a97b36661c0945b77a6b9bb0948/analysis/

[12] Pro Hack. Create a Zip Bomb - Zip of Death. [Online].

http://www.theprohack.com/2009/03/create-zip-bomb-zip-of-death.html

[13] Hacking Tutorials. Zip Bomb. [Online].

http://www.theprohack.com/2009/03/create-zip-bomb-zip-of-death.html

[14] Stackoverflow.com. [Online].

http://stackoverflow.com/questions/1459673/how-does-one-make-a-zip-bomb

[15] Wikipedia. [Online].

https://en.wikipedia.org/wiki/Fork_bomb

[16] AERAsec Network Services and Security. [Online].

ftp://ftp.aerasec.de/pub/advisories/decompressionbombs/pictures/

[17] Phil Knufer. ‘Mitigating Anti-Forensics: A Schema Based Approach’. [Online].

http://starfish.digitrace.de/media/thesis.pdf

[18] Securityfocus.com. [Online].

http://www.securityfocus.com/bid/3027/exploit/

[19] Didier Stevens, ‘Dismantling an XML-Bomb’. [Online].

http://blog.didierstevens.com/2008/09/23/dismantling-an-xml-bomb/

[20] Haking Tutorials. Zip Bomb. [Online].

 http://xeushack.com/zip-bomb/

[21] Kat.cr. [Online]

https://kat.cr/zip-bomb-insanely-huge-zip-archive-4zb-

t2105770.html?download=http://torcache.net/torrent/4CB8D7FCDFAEB5BEB1443AAD59026D7A89D435C5.torrent?title=%5bk

at.cr%5dzip.bomb.insanely.huge.zip.archive.4zb

[22] Bugzilla. Mozilla.org. [Online].

https://bugzilla.mozilla.org/show_bug.cgi?id=1031035

[23] Alain Homewood, ‘Anti-forensic implications of software bugs in digital forensic tools’. 2012. [Online].

http://aut.researchgateway.ac.nz/bitstream/handle/10292/5364/HomewoodA.pdf?sequence=3

[24] Rapid7.com. [Online].

http://www.metasploit.com/projects/antiforensics

64

[25] Piper, Davis & Shenoi, ‘Countering Hostile Forensic Techniques’. Advances in Digital Forensics II. IFIP

international Conference on Digital Forensics. [2006].

[26] Cheong Kai Wee, ‘Analysis of Hidden Data in the NTFS File System’. [Online].

http://www.forensicfocus.com/downloads/ntfs-hidden-data-analysis.pdf

[27] hephaest0s, ‘usbkill,’ [Online].

https://github.com/hephaest0s/usbkill

[28] Wikipedia. [Online].

https://en.wikipedia.org/wiki/Open_source

[29] Scudette in Wonderland. Anti-forensics and memory analysis. [Online].

http://scudette.blogspot.com.ee/2014/02/anti-forensics-and-memory-analysis.html

[30] Handler Diaries. Forensic Analysis of Anti-Forensic Activities. [Online].

http://blog.handlerdiaries.com/?p=363

[31] MalwareJake. Analysis of ADD Ref Image - Part 1. [Online].

http://malwarejake.blogspot.com.ee/2014/01/analysis-of-add-ref-image-part-1.html

[32] Dementia. Google Code. [Online].

https://code.google.com/p/dementia-forensics/

[33] Complete Guide to Anti-Forensics – Leave no trace. [Online].

http://haxf4rall.com/tag/anti-forensics/

[34] Microsoft Developer Network. [Online].

https://msdn.microsoft.com/en-us/library/windows/desktop/aa819132(v=vs.85).aspx

[35] Microsoft Developer Network. [Online].

https://support.microsoft.com/en-us/kb/314834

[36] M. Hammond, ‘Python Programming On Win32: Help for Windows Programmers’, 2000.

