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Sensing for Suspicion 
at Scale: A Bayesian 
Approach for Cyber 
Confl ict Attribution and 
Reasoning

Abstract: Cyber confl ict monitoring remains one of the biggest challenges today, amidst 
increasing scaling up of cyberspace in terms of size, bandwidth and volume. Added to this, the 
increased determination of cyber actors to operate beneath the threshold makes it ever more 
diffi cult to identify unauthorised activities with desired levels of certainty and demonstrability. 
We acknowledge a case for persistent and pervasive monitoring; detection of serious sabotage 
and espionage activities, however, is dependent, in part, upon the ability to maintain traffi c 
history over extended periods of time, somewhat beyond current computational and operational 
constraints. This makes it crucial for research in cyber monitoring infrastructures, which are 
confi gured to handle cyberspace at live and modern scale and sense suspicious activity for 
further investigation. This paper explores Bayesian methods together with statistical normality 
to judge for effective activity attribution, particularly in high-volume high-scale environments, 
by combining both prior and posterior knowledge in the scenario. The set of experiments 
presented in this paper provides tactical and operational principles for systematic and effi cient 
profi ling and attribution of activity. Such principles serve a useful purpose for technologists 
and policy-makers who want to monitor cyberspace for suspicious and malicious behaviour, 
and narrow down to likely sources. The proposed approach is domain agnostic and hence of 
interest to a cross-disciplinary audience interested in technology, policy and legal aspects of 
cyber defence.
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1. INTRODUCTION

Cyber confl icts are increasingly a part of mainstream warfare. Attribution of cyber activity 
— “knowing who is attacking you” or “determining the identity or location of an attacker 
or an attacker’s intermediary” [1,2,3] – is naturally a vital ingredient in any cyber security 
strategy. Parker claims that ‘a common problem with many analysis tools and techniques today 
is that they are simply not designed for purposes of attribution’ [4]. According to [5,6], although 
current approaches are capable of alerting to suspicious activities, they are failing in this 
information age because when computers are under attack, the ‘who’ and ‘why’ are frequently 
unknown. Many researchers claim that completely depending on information derived from 
network traces will do little for cyber confl ict attribution and detection, mainly due to the nature 
of Internet infrastructure, and therefore there is a need for approaches that combine technical 
solutions data with the information gathered from contextual analysis and intelligent services 
(combining prior belief with posterior knowledge) [7]. This paper aims to address this challenge 
and presents work ultimately contributing towards this goal. 

Reconnaissance, the fi rst phase of the anatomy of a cyber attack, can be further sub-divided into 
three incremental stages: casing, scanning, and enumeration. It is diffi cult to tackle suspicious 
activities at the casing stage, as everything seems to be legitimate. However in the second stage, 
scanning, the attacker attempts to send packets to the target IP address (range of IP addresses) 
with the goal of determining what machines are presented and reachable (ports) on the target 
network.  Two most common examples of scans, among many others, are ‘pings-ICMP’ and 
‘SYN-TCP’. This offers a starting-point for detection of potentially suspicious activity. For 
enumeration, the attacker may follow up with various kinds of attempts to identify services. 
The detection of scan and enumeration attempts is made more diffi cult as attackers increasingly 
use slow scan rates to stay beneath the threshold. If an attacker is methodical enough to make 
only the slightest of changes at any one time and each step is spaced far enough apart, it will be 
diffi cult to detect by traditional signature matching algorithms. Often, network-based intrusions 
signatures are state-full and require several pieces of data to match an attack signature. If 
the length of event horizon (time amount from the initial data piece to the fi nal data piece 
needed to complete the attack signature) is longer, intrusion detection systems (IDSs) cannot 
maintain state information indefi nitely without eventually running out of resources. This helps 
slow attackers to hide behind noise and other traffi c. Most current approaches do not track 
activity over an extended period of time, due to computational constraints and disc storage 
requirements. This paper develops an approach to serve as an early warning system for slow 
suspicious activities that warrant further investigation.

This work is inspired by Chivers et al.’s work [8,9] to adopt a Bayesian approach to combine 
both prior and posterior knowledge in the scenario and detect (with attribution) slow and 
suspicious activities in a cyber confl ict. The series of experiments examines the effectiveness 
of such an approach under different parameters: multiple attackers, traffi c volume, cluster size 
and event sampling.

The rest of this paper is organised as follows: Section 2 presents a brief overview of related 
work; Section 3 presents the underlying methodology and the theoretical account of the process; 
Section 4 overviews the experimental set up and Section 5 follows up with results and analysis. 
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Section 6 presents some early results on possible use of sampling. Section 7 concludes the 
paper.

2. RELATED WORK

Although a considerable number of anomalies-based intrusion detection approaches have been 
proposed during the last two decades, many of them are general in nature and quite simple 

[10-12]. They fail in attributing, in accumulating evidence, and also in scaling up. Since our 
approach accumulates evidence (both contextual and technical traits) over an extended period 
of time and uses that information to identify aberrant behaviours (see Sections 3 and 4) it differs 
from most of the above existing approaches, and can be known as an incremental anomaly 
detection approach. Based on an exhaustive survey of published incremental anomaly detection 
approaches, Bhuyan et al. conclude that most existing approaches have a high rate of false 
alarms, are non-scalable, and are not fi t for deployment in high-speed networks [13]. On that 
perspective, the proposed approach differs from existing incremental approaches, since this 
is scalable in terms of storage and possible to incorporate with live analysis on high-speed 
networks. The proposed approach requires maintaining only a single value for a given node. 
Most of the current intrusion detection approaches do not accommodate integrating contextual 
information with attack detection and attribution and are heavily dependent on technical 
traits only [13-20]. Hence, our approach is signifi cantly different from most of the existing 
approaches. However [8-12,22-24] can be identifi ed as deviations from the current general and 
quite simple systems. 

Kandias et al. propose a model to integrate the user’s technological traits with data obtained 
from psychometric tests [24]. Although the authors focus on insider attacks, the core idea in 
their paper coincides (to some extent) with our work, since they do not depend completely on 
network traces. They combine users’ (psychological) profi les with technical data. However, 
their model is highly subjective, organisationally dependent and does not accommodate any 
information gathered from contextual analysis. Most importantly, it cannot be applied to profi le 
non-human actors. In contrast, ours can be used to profi le human, non-human or even virtual 
actors and can be extended to accommodate a wide range of contextual information. 

Chivers et al. provide a scalable solution to identify suspicious slow insider activities, combining 
evidence from multiple sources using the well-known Bayes’ formula [8,9]. Although similarly 
motivated, our work mainly differs from the decision criteria used for the analysis as described 
in Section 3 and from the target domain. Also, we have discussed the possibility of extending 
the same formula to integrate contextual information on detection.  Chivers et al. distinguish 
between anomaly and normal behaviours by setting a control (base line) and choosing the 
one most deviant from the control as an attacker. This is not practical, as it is very hard 
setting a predefi ned baseline for node behaviours and the authors have not discussed it. As we 
identifi ed, when there are more than one attacker in a subnet with higher variations of nodes 
behaviours, this decision criterion does not work well. Comparison across subnets (i.e. using 
a common baseline for all subnets) is also problematic. Identifying anomaly nodes through 
visually inspected row score graphs is another issue in Chivers et al.’s work. Such a decision 
can be affected by even dimensions of the drawing canvas in a situation where there is a higher 
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variation in parameter values. In such a situation, standardisation of node scores should be 
performed, before any comparison, which has been ignored by their work. However Chivers 
et al. themselves identify a need for different decision criteria other than the Maximum score 
function method they used. We have incorporated the concept of statistical normality into our 
work when addressing these issues. 

Basu et al. propose an approach which uses connection-based windows to detect low-profi le 
attacks with a confi dence measure while Streilein et al. use multiple neural network classifi ers 
to detect stealthy probes [22,23].  [21,24,29] can be identifi ed as much more similar studies 
to Chivers et al.’s work. In [23,24], users are profi led according to their behaviour and that 
information is used to identify users who require further investigations. Evidence accumulation 
as a means of detecting slow activities has been proposed by [21]. All the above approaches, 
except [8,9,21], require the storage of large volumes of event data for later analysis, and hence 
differ from our work. [21] differs from our work as it uses a counting algorithm instead of 
the Bayesian approach and also in its decision criteria. Importantly, all the above approaches, 
except [24], are profi ling the suspected origins based on technical solution data only. Since 
our aim is not only to propose an effi cient attribution methodology but also to conduct an 
investigation of its effectiveness under different conditions, certainly this work signifi cantly 
differs from all the above works.

3. METHODOLOGY

We address the problem by dividing it into two separate smaller sub-problems: Evidence 
fusion & aggregation (Accumulation) and Analysis (Anomaly defi nition) assuming that exiting 
signature detection algorithms could be employed to detect the events (signature elements) of 
an attack pattern. The term node is used in this paper to denote anything in terms of identities, 
which can be a user, machine, account number or a location (physical or virtual), essentially the 
visibility source of a potential attack [2,3].

A. Evidence fusion & aggregation
According to Brackney et al., integrating information from many sources in a manageable and 
scalable fashion, in order to identify patient attackers, is still an important open question [18]. 
Chivers et al. claim that combining events from one or more sensors (possibly of various types) 
while reducing data without adversely impacting detection is a major challenge [8,9]. Both 
statements are talking about ‘Evidence fusion & aggregation’. Chivers et al. use a Bayesian 
approach, while [21] uses a counting algorithm for this purpose. However [8,9] show that the 
Bayesian approach is superior to the counting algorithm. At this stage, we also used the simple 
Bayes’ formula for evidence fusion, as described in the next sub-section. Jiang et al. show that 
probabilistic correlation works well in noisy environments [28]. However, investigating ways 
to apply other possible methods, instead of the simple Bayes’ formula, such as Bayesian Belief 
network, Kernel Density Estimation (KDE), Dempster-Shafer theorem, Kalman Filter, Viterbi 
algorithm, Gi*, Evidential reasoning, Logic based fusion, Preference aggregation, Neural 
networks, Ontology & category theory for this task would be interesting and is left as future 
work in this ongoing work.
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Bayesian approach
The posterior probability of the hypothesis Hk given that E is given by the well known formula: 

 

In order to fi t this formula into our case, let Hk: hypothesise that kth Node is an attacker and E 
={e1,e2,e3,...,em} the set of all suspicious evidence observed against node k during time t from m 
different independent observation spaces. Here P(E) is the probability of producing suspicious 
events by node k, but on its own is diffi cult to calculate. This can be avoided by using the law 
of total probability and reformatted (1) as:

 

For independent observations, the joint posterior probability distribution:

 

Once we observed E from node k, to calculate the posterior probability of node k being an 
attacker p(Hk/E),  it is necessary to estimate:

1. p(ej/Hi) - likelihood of the event ej given the hypothesis Hi and,
2. p(Hi) - prior probability 

Assuming that we know the prior and likelihoods, it is obvious that (3) facilitates to combine 
evidence from multiple sources (contextual information) to a single value (posterior probability) 
which describes our belief, during a short observation period, that node k is an attacker given E. 
Aggregating short period estimations over time helps to accumulate relatively weak evidence 
for long periods. This accumulated probability term, Ʃt p(Hk/E) (t is time) known as profi le 
value hereafter, can be used as a measurement of the level of suspicion for node k at any given 
time. Schultz et al. claim that profi ling suspected insiders provides one of the best ways of 
reverse engineering an attacker [25]. Although there are some signifi cant differences between 
the characteristics of insiders and outsiders, profi ling can still be used effectively in cyber 
confl ict attribution, as shown in the rest of the paper.

B. Analysis
At any given time, given the profi les of all nodes, detecting suspicious profi les is the analysis 
stage as the attacker’s activity pattern is now refl ected by profi les. Bhuyan et al. claim that 
anomaly detection is usually fl exible and suffi cient to detect both unknown (novel) and known 
attacks [13]. When there is an attacker who violates legitimate users’ activity patterns the 
probability that the attacker’s activity is detected as anomalous should be high. We distinguish 
between anomalous and normal profi les using the concept of statistical normality.

P(Hk/E) = (1)
p(E/Hk) • p(Hk)

p(E)

P(Hk/E) =

P(Hk/E) =

(2)

(3)

p(E/Hk) • p(Hk)

Πj p(ej/Hk) • p(Hk)

Ʃi p(E/Hi) • p(Hi)

Ʃi Πi p(ej/Hi) • p(Hi)
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Statistical Normality
The statistical approach to normality defi nes it in terms of a normal distribution curve. A normal 
curve is a statistical data distribution pattern occurring in many natural processes. As long as 
what is most common (average or most frequent) in the general population is considered as 
normal, any behaviour or characteristic that occurs only rarely can be regarded as abnormal. In 
a normal distribution, node profi les lying outside (around) three standard deviations from the 
mean can be considered as abnormal. This boundary may vary, so one may defi ne abnormality 
beyond two standard deviations from the mean and hence select a wider selection of nodes 
for further investigation. One advantage of this is that confi dence in attribution can also be 
expressed in probability terms. Calculating standardised node profi les (Z-scores) instead of 
node profi les themselves, will resolve the analysis problem better.

4. EXPERIMENTAL SETUP

To demonstrate the proposed approach, a series of experiments were conducted. Simulation was 
used to express network topology and traffi c patterns of interest were generated using NS3 [26], 
assuming Poisson arrival model with inter-arrival time gap between two consecutive events as 
an exponential, to collect data on the characteristics and behaviour of several common network 
reconnaissance tools. Each simulation was run for a reasonable period of time to ensure that 
enough traffi c was generated (over one million events).

A. Network Topology
Figure 1 shows the network topology used for our experiments. A total of 2,122 nodes were 
distributed among four networks labelled A (99 nodes), B (400 nodes), C (800) and D (800 
nodes). In addition, a network dedicated to a server farm was simulated with 23 nodes.

FIGURE 1.  THE NETWORK TOPOLOGY USED FOR EXPERIMENTS. 
SOURCE FOR GRAPHIC SYMBOLS: FUNDAMENTALS OF NETWORK SECURITY GRAPHIC SYMBOLS, 
CISCO NETWORKING ACADEMY PROGRAM (FREELY AVAILABLE ON WWW).
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B. Attacker Modelling
If λs . λ1 are mean rates of generating suspicious events by suspicion and normal nodes 
respectively, we ensured maintaining λs = (λ1 . λ1 + 3√λ1] and λ1(=0.1) suffi ciently smaller 
for all our experiments to characterise slow suspicious activities which aim atstaying beneath 
the threshold and hiding behind the background noise. √λ1 is the standard deviation of rates of 
suspicious events generated by normal nodes. 

C. Parameter Estimation
Prior probabilities and Likelihoods are assigned as follows.

(4) assumes that all nodes in the scene have a same prior belief (equally likely) to be subverted. 
However, this is not the case in many situations. In cyber warfare, as many countries have a cold 
cyber war with other countries [6], one entity may have a higher prior belief of suspicion about 
the activities of another. In networks, an e-commerce server may have a higher chance to be 
subverted than a client node. In a company, an angry programmer attached to the IT department 
could be more dangerous than a loyal employee in the marketing department. Therefore if the 
analyst requires to distinguish between identities (or clusters of identities, for example, in case 
of identity is a geospatial location; a cluster can be a province, a country or even an alliance of 
countries), prior probability can be assigned separately. Since prior probabilities are based on 
previous experiences, p(Hm) can be judged by the analyst, based on the information gathered 
from contextual analysis or intelligent services.

(5) explains the likelihood of producing event ej by any node if it is subverted. For the purpose 
of demonstration, we assigned arbitrary values (≤1) for k. However it can be estimated as 
follows. If ej is an event such as UDP scan or land attack which cannot be expected from 
a non-subverted node, then k can be assigned to one. However, k cannot always be one, for 
some suspicious events that appear as a part of attack signatures could also be originated from 
normal network activities. For example, a major router failure could generate many ICMP 
unreachable messages; an alert of multiple login failures could result from a forgotten password. 
An execution of cmd.exe could be part of a malicious attempt or a legitimate one, as it is 
frequently used by malicious programs to execute commands while it is also frequently used 
by legitimate users during their normal day-to-day operations. The question is how to estimate 
p(ej/Hm) if ej becomes such an observation (true positives)? One possible answer would be 
using IDS evaluation datasets such as ISCX 2012 [32] or DARPA as corpuses and using similar 
techniques used in the natural language processing domain.  Chivers et al. claim that, in some 
cases, the historical rate of occurrences of certain attacks is known and can be used to estimate 
the likelihood that certain events derive from such attacks or it may be suffi cient to quantify 

P(Hm) = P(Hn) =

p(ej/Hm) = p(ej/Hn) = k,      for all j, m, n and m ≠ n

(4)

(5)

1
Number of nodes in the scene

, for all m, n and m ≠ n
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these frequencies, in a similar way to estimating risk likelihoods, to an accuracy of an order of 
magnitude [9].

5. RESULTS AND ANALYSIS

In this section, experimental results are presented along with the analysis. 

A. Identifying Suspicious Nodes
The proposed approach was tested against 25 (=5x5) test cases, varying subnet sizes 
{25,50,100,250,500} and number of attackers {1,2,4,7,10}, and it was observed that the 
proposed approach detected slow attackers well in all 25 cases.  Due to space constraint only 
one test case, 100 size subnet with four attackers, is listed here. 

Four low rate attackers were located in a 100 size subnet of network B. All clients generated 
innocent events (events such as forgotten password etc.) while four attackers generated low rate 
attack (reconnaissance) events. At each time point, node profi les were calculated for all 100 
nodes in the subnet and converted to Z-scores. Node profi les and Z- scores were plotted as in 
Figures 2 and 3 respectively. 

1) Maximum Score approach
As mentioned in Section 2, selecting suspicious nodes by looking at raw node profi les is 
problematic when there is more than one suspicious node.  Although all suspicious nodes 
are above the Max line (after some time), setting this Max is problematic in real world 
implementations.

FIGURE 2. CUMULATIVE PROBABILITIES (NODE PROFILES), S1,S2,S3,S4 DENOTE ATTACKERS. 
MIN AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF NORMAL NODES AT 
EACH TIME POINT.
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2) Z-Score approach
Attackers are always above or near around three standard deviations from the mean, and most 
importantly, there is a clear visual separation between a set of normal nodes and anomaly nodes. 
Graphs become more stable by the time (i.e. assuming stationary status), which means the 
proposed decision criteria are better for distinguishing anomalous profi les from normal profi les 
than the ‘Maximum score approach’. 

FIGURE 3. Z-SCORES OF NODE PROFILES. S1,S2,S3,S4 REPRESENT SUSPICIOUS NODES. 
MIN AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF NORMAL NODES AT EACH TIME POINT.

3) Best and worst cases
To investigate how the proposed approach works with best and worst cases, the above 
experiment was repeated twice, fi rst without any attackers and then with all subverted nodes, 
and obtained the similar graphs as in Figure 4 in both cases. Most of the nodes are nearly 
between three standard deviations from the mean, and none of the nodes can be seen clearly 
separated from the majority. However this would not be a problem. If an analyst sees a similar 
graph, it would be safe to assume that all nodes are subverted (instead of assuming they are free 
of attackers) and to do further investigations on one or two nodes to verify. If investigated nodes 
are attackers it is reasonable to consider that all nodes are attackers or vice versa.

FIGURE 4. Z-SCORES OF NODE PROFILES, NO ATTACKERS, 100 SIZED SUBNET.
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4) Node behaviour
To investigate how proposed Z-score graphs refl ect the behaviour of nodes (identities), three 
attacker nodes were located in a 50 size subnet in network D. All others were innocents. Two 
out of three attackers stopped their reconnaissance attempts at 200 and 300 times respectively. 
As shown in Figure 5, when an attacker node changes its behaviour the relevant Z-score graph 
responds to that behaviour by changing its direction. 

FIGURE 5. Z- SCORE GRAPHS ARE SENSITIVE TO NODE BEHAVIOUR. 
S1,S2,S3 ARE SUSPICIOUS NODES. ALL OTHERS ARE INNOCENTS.

B. Attacker Localisation
In a situation, there are multiple suspected sites to be investigated (e.g. different actors, 
subnets, LANs, locations etc) and determining the centres of attention would be problematic.  
Localisation of attackers’ identities as much as possible, at least for an intermediary level, or 
choosing the smallest subset in which an attacker may be located, would greatly save the cost 
and time to be spent on investigations. To investigate the capability of the proposed approach 
herein: one attacker was placed in a subnet of network C. Scores were assigned (profi ling) the 
Gateways of each subnet, using the formula:

assuming each reconnaissance event can be reverse engineering only up to the gateways. They 
were converted to the Z-scores and Figure 6 was obtained. GA, GB, GC and GD are gateways 
of networks A, B, C and D respectively.

Gateway score =
Cumulative Score

Number of nodes in the subnet
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FIGURE 6. Z – SCORES OF GATEWAY SCORE OF EACH NETWOK.

Figure 6 proves the proposed approach useful in attacker localisation.

C. Network Parameters
In this section we investigate how different network parameters affect the attribution of slow 
activities.

1) Traffi c Volume
An attacker was located in a 51 size subnet of Network C and generated events. The same 
experiment was repeated six times, keeping all parameters unchanged except the attacker’s 
traffi c volume. If the attacker’s traffi c volume is V the fi rst time, then at each repetition the 
attacker’s traffi c volume was incremented by one time as 2V, 3V, ...,7V. For each experimental 
run, the deviation of attacker’s profi le value from the average of normal (statistical norm) was 
calculated. Then the standardised deviations (z-scores of deviations) are plotted as in Figure 7. 
The graph tells us: ‘the higher the traffi c volume generated by attacker, the easier his detection 
will be.’
 
FIGURE 7. Z-SCORES OF DEVIATIONS OF CUMULATIVE NODE SCORES.
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2) Cluster Size
To investigate how the identities’ cluster size (here subnet size) affects detection, an attacker 
was located in a 500 size subnet and the same experiment was repeated six times by keeping 
all other parameters, except the subnet size, unchanged. Subnet size was changed to 400, 300, 
200, 100, 50 and 25 at each experimental run and the graphs in Figures 8, 9 and 10 were 
obtained. Figure 8 and 9 say ‘attackers have less chance to hide behind innocent events, when 
the cluster size decreases.’ It is further reinforced by Figure 10 saying ‘the smaller the cluster 
size, the better for detection of suspicious slow activities’ in terms of security. But, in practice, 
it should be noted that partitioning a network into very small subnets would not be a feasible 
solution sometimes, as it depends on several other factors such as resources availability and 
user requirements. Figure 10 also suggests that ‘going beyond 100 size cluster would not make 
any real sense in terms of detection.’ 

FIGURE 8. PERCENTAGES (%) OF SUSPICIOUS EVENTS GENERATED BY ALL INNOCENTS.

FIGURE 9. PERCENTAGES (%) OF SUSPICIOUS EVENTS GENERATED BY ATTACKER.

The authors would like to reiterate that a subnet equals a cluster of identities. For example, in a 
case of cold cyber war or in an attack like the well-known Georgia 2008 case, a cluster can be 
a country or a region of a suspected country and identity can be any physical or virtual location 
within that country or region.
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FIGURE 10. Z – SCORES OF ATTACKER’S DEVIATIONS FROM THE AVERAGE.

3) Number of Attackers
Keeping all conditions unchanged, except number of attackers, the same experiment was 
repeated twice, fi rst with two attackers and then with seven attackers. The attacker’s node score 
(see Figures 11 and 12) is dependent on ‘the number of attackers in his own subnet’ (compare 
attackers’ Z-scores). This rationalises the usage of ‘Statistical normality’ as the decision criteria 
and suggests defi ning ‘one’s abnormality’ relative to his peers (i.e within the same domain, 
department, similar user group, region, country etc.) would give better results (in terms of 
lower false alarms) than defi ning it universally. Comparison of nodes profi les (as in Figure 2) 
regardless of their subnets would give higher false alarms.

FIGURE 11. Z-SCORE GRAPHS FOR SAME SIZE SUBNETS WITH DIFFERENT 
NUMBER OF ATTACKERS (250 SIZE SUBNET, TWO ATTACKERS)



406

FIGURE 12. Z-SCORE GRAPHS FOR SAME SIZE SUBNETS WITH DIFFERENT 
NUMBER OF ATTACKERS (250 SIZE SUBNET, SEVEN ATTACKERS).

6. SAMPLING TECHNIQUES

Many IDSs such as Snort facilitate for logging data in a variety of ways for later analysis, as 
it is an essential part of any intrusion detection activity.  If you are not looking at the logs and 
monitoring the alerts, then effort invested into an IDS can quickly become meaningless [27]. 
In a slow attack environment, logging is crucial as you cannot log everything during longer 
times. The large size/unmanageable nature of the target population is one of the main reasons 
for sampling instead of doing a census. As it is almost similar to the problem the analyst faces 
herein, the simple random sampling technique was used to investigate the usability of sampling 
for data logging in slow-attack environments.

An attacker was located in a subnet of network C and ‘stateless’ attacks events were generated. 
The simulation was allowed to run 1440 time units. The whole period was divided into twelve 
blocks, and within each block, a sample was collected using an R [31] script. Finally, all twelve 
samples were combined together to make one fi nal sample. The same experiment was repeated 
with different sample sizes in order to identify how sample sizes affect ‘detection potential.’ 
Table 1 and Graphs in Figures 13, 14, 15 and 16 show the experimental outcomes. We varied 
the sample sizes from 80% to 0.625% (see Table 1), always half of the previous size.

TABLE I. SAMPLING STATISTICS.

Sample Size as a % of 
population/whole 
observation)

Number of Attack 
Events selected

Number of Innocent 
Events selected

Percentage (%) of 
Attack Events

80

826

260244

0.32

40

420

130235

0.32

20

188

65200

0.29

10

113

32356

0.35

5

56

16043

0.35

2.5

18

8029

0.22

1.25

12

4188

0.29

0.625

6

2026

0.30
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Although the fi tted trend line in Figure 13 shows a very small positive trend between percentage 
of suspicious events and sample size, the real fi gures in the table explain that it would not be 
signifi cant. Interestingly, ‘in each sample, the percentage of suspicious events generated by the 
attacker is almost same as it is in the population (0.3)’ is a good indicator that selected samples 
represent the intended population’s characteristics, regardless of its size. Analyst may choose 
sampling techniques for long-term networking monitoring (it could not be for detection, but 
may be for other purpose of traffi c analysis), deciding the sample size based on the resources 
availability and the intended purpose. 

FIGURE 13. PERCENTAGE OF SUSPICIOUS EVENTS GENERATED BY ATTACKER.

Graphs in Figure 14, 15, 16 show that the analyst can enjoy the population characteristics (in 
terms of this analysis) even if the size of the sample is 5% of the entire data capture. This would 
be a good indicator, why?, if an analyst can reduce his focus by 95% it will reduce the time and 
cost too. However when the sample size is smaller than 2.5% of its population size, anomaly-
based detection methods cannot be used. But the table explains that signature based detection 
methods can still be used, as it contains very few attackers’ signatures. Generally using 10% 
size sample would be an ideal for detecting suspicious slow activities, whether it is based on 
anomaly or signature-based detection methods. However the authors do not generalise the 
optimal sample size as 10%. It could be highly subjective and varied according to the intended 
analysis. Further experiments are needed on this topic. At least at this stage, the authors have 
shown that some population characteristics remain unchanged in samples and, hence there is a 
possibility to use sampling techniques in this domain.

FIGURE 14. Z-SCORES, WHEN THE SAMPLE SIZE IS 10% OF WHOLE TRACE. S REPRESENTS THE 
SUSPICIOUS NODE. MIN AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF 
NORMAL NODES AT EACH TIME POINT.
 



408

FIGURE 15. Z-SCORES, WHEN THE SAMPLE SIZE IS 5% OF WHOLE TRACE. S REPRESENTS THE 
SUSPICIOUS NODE. MIN AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF 
NORMAL NODES AT EACH TIME POINT.
 

FIGURE 16. Z-SCORES, WHEN THE SAMPLE SIZE IS 2.5% OF WHOLE TRACE. S REPRESENTS THE 
SUSPICIOUS NODE. MIN AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF 
NORMAL NODES AT EACH TIME POINT.

7. DISCUSSION

An effi cient method for cyber confl ict attribution (particularly slow activities) and an 
investigation of its effectiveness under different conditions have been provided. Breaking down 
the attribution problem into two sub-problems reduces the complexity of the problem, and 
explores ways to investigate alternative methods. The proposed approach is domain agnostic. 
It can be easily adjusted to use in many aspects of cyber warfare and help in actor intelligence: 
profi ling adversarial technical capabilities; creating linkage between actor groups; tracking 
the supply chain; and differentiating between actors (e.g. state-sponsored or criminal) etc. It 
can be used for profi ling any kind of actors, not only in the cyber domain but also in other 
domains such as crime and juridical sciences. Experimental outcomes and recommendations 
presented in Sections 5 and 6 provide tactical and operational principles for systematic and 
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effi cient profi ling and attribution. They are particularly useful in the capacity planning stage of 
a network design process. Findings of how cluster size affects detection can be incorporated 
with existing clustering based analysis approaches [30,14]. In future, identifying the best 
performance method (among alternative methods such as using sensor fusion algorithms) and 
handling some miscellaneous issues, such as overcoming situations when the source of the 
event is unknown, will be addressed. Based on the idea derived from Section 6, an experiment 
was set up to investigate the possibility of using mobile sensors to slow activity detection. An 
attacker was located in network D. A Finite state automaton (see Figure 17) was used to control 
the sensor mobility (transitions). At any given state, the sensor spends a constant time interval 
for monitoring. Scores were updated only when the sensor had visibility to the target subnet. 

FIGURE 17. FINITE STATE AUTOMATA USED FOR SENSOR MOBILITY, P0=0 AND P1=0.33.

As Figure 18 shows, it can identify the attacker, even using a mobile sensor. This could be 
mainly due to the cumulative nature of the proposed approach and the usage of automaton. 
It should be noted that the transition probabilities (P0, P1) of the above automaton can be 
estimated dynamically, based on evidence at the scene, in order to improve the quality of the 
detection, which is also left for future work. 
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FIGURE 18. Z-SCORE GRAPH FOR SENSOR MOBILITY. S REPRESENTS THE SUSPICIOUS NODE. MIN 
AND MAX REPRESENT THE MINIMUM AND MAXIMUM Z-SCORES OF NORMAL NODES AT EACH 
TIME POINT.
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